We present a novel power-to-water (P2W) battery that can store electricity as thermal energy and discharge it as a heat source for hygroscopic solution desorption. The battery can work in two scenarios: atmospheric water harvesting (AWH) and dehumidification. The involvement of high-grade energy and sophisticated design enables better sorption kinetics and storage density. A proof-of-concept prototype verified the feasibility and achieved a record-breaking water production rate of more than 10.2 g (L device h) −1 . Also, the battery can achieve a round-trip efficiency of 90% for AWH and 68% for dehumidification in large-scale storage. The inexpensive storage medium contributes to a very low cost per energy (∼20 $ kWh −1 ) which means that P2W batteries excel in short-and long-duration storage. The long-term transient performance studies demonstrate impressive competitiveness over the traditional AWH and vapor-compression dehumidification systems. P2W provides new directions for the development of versatile, scalable, repeatable, and sustainable energy storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.