Quantitatively mapping forest aboveground biomass (AGB) is of great significance for the study of terrestrial carbon storage and global carbon cycles, and remote sensing-based data are a valuable source of estimating forest AGB. In this study, we evaluated the potential of machine learning algorithms (MLAs) by integrating Gaofen-1 (GF1) images, Sentinel-1 (S1) images, and topographic data for AGB estimation in the Dabie Mountain region, China. Variables extracted from GF1 and S1 images and digital elevation model data from sample plots were used to explain the field AGB value variations. The prediction capability of stepwise multiple regression and three MLAs, i.e., support vector machine (SVM), random forest (RF), and backpropagation neural network were compared. The results showed that the RF model achieved the highest prediction accuracy (R2 = 0.70, RMSE = 16.26 t/ha), followed by the SVM model (R2 = 0.66, RMSE = 18.03 t/ha) for the testing datasets. Some variables extracted from the GF1 images (e.g., normalized differential vegetation index, band 1-blue, the mean texture feature of band 3-red with windows of 3 × 3), S1 images (e.g., vertical transmit-horizontal receive and vertical transmit-vertical receive backscatter coefficient), and altitude had strong correlations with field AGB values (p < 0.01). Among the explanatory variables in MLAs, variables extracted from GF1 made a greater contribution to estimating forest AGB than those derived from S1 images. These results indicate the potential of the RF model for evaluating forest AGB by combining GF1 and S1, and that it could provide a reference for biomass estimation using multi-source images.
The alpine vegetation of the Qinghai–Tibet Plateau (QTP) is extremely vulnerable and sensitive to climatic fluctuations, making it an ideal area to study the potential impacts of climate on vegetation dynamics. Fractional vegetation cover (FVC) is regarded as one of the key indicators in monitoring semiarid and arid ecosystems due to its sensitive responses to vegetation behavior under climatic changes. Although many studies have analyzed the responses of vegetation on the QTP to climatic change, limited information is available on the influence of climatic variables on FVC changes in this area. In this study, we used satellite images and meteorological data to investigate the spatiotemporal variations of FVC during the growing season (FVCGS) during 1998–2018 and evaluated the responses to changes in climatic variables. Results showed that FVCGS displayed an overall fluctuating rise of 0.01/10 a (p < 0.01) over the study period. The FVCGS variation was spatially heterogeneous, with a general trend of greening in the northern and browning in the southern QTP. Obvious correlations were observed between the average FVC, average temperature, and total precipitation of the growing season, with precipitation being the primary controlling factor for vegetation growth. Some regions in the northwestern and northeastern QTP showed greening trends due to the positive influence of precipitation. Some areas in the southwestern QTP experienced browning trends due to water shortages caused, probably, by the weakening of the Indian monsoon. Browning in the southeastern parts was likely caused by drought and permafrost degradation resulting from high temperature. The inconsistent trend of vegetation change on the QTP is relatively high considering the continuous warming and changing atmospheric circulation patterns. FVC in most regions of the QTP has 0–1 month temporal responses to precipitation and temperature. Moreover, the one-month lagged effects of temperature and precipitation had a greater influence on steppe and desert vegetation than on other vegetation types. This research provides new perspectives for understanding the QTP vegetation response to climatic changes and a basis for making reasonable vegetation conservation and management policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.