Phase separation (PS) proteins form droplets to regulate myriad membraneless organelles (MLOs) and cellular pathways such as transcription, signaling transduction and protein degeneration. PS droplets are usually liquid-like and can convert to hydrogel/solid-like under certain conditions. The PS behavior of proteins is regulated by co-PS partners and mutations, modifications, oligomerizations, repeat regions and alternative splicing of the proteins. With growing interest in PS condensates and associated proteins, we established PhaSepDB 1.0, which provided experimentally verified PS proteins and MLO-related proteins. The past few years witnessed a surge in PS-related research works; thus, we kept updating PhaSepDB. The current PhaSepDB contains 1419 PS entries, 770 low-throughput MLO-related entries and 7303 high-throughput MLO-related entries. We provided more detailed annotations of PS proteins, including PS verification experiments, regions used in experiments, phase diagrams of different experimental conditions, droplet states, co-PS partners and PS regulatory information. We believe that researchers can go further in studying PS proteins with the updated PhaSepDB (http://db.phasep.pro/).
Numerous congenital or secondary diseases, including, heart disease, respiratory disease, sepsis and many others, can lead to neonatal death. B-type natriuretic peptide (BNP) is a peptide hormone secreted by ventricular cells following an increase in ventricular wall tension. BNP functions to promote vasodilation, diuresis, and sodium release to regulate blood pressure. BNP is a sensitive index reflecting ventricular function, which may aid the diagnosis and monitoring of various neonatal diseases. In neonates, there is currently no consensus on a reference BNP level, as the plasma BNP concentration of healthy newborns varies with age, peaks in the first week after birth, and then gradually decreased to a stable level. In disease states, the correlation between the plasma BNP concentration and the results of echocardiography is good, which is of great significance in the screening, monitoring, and prognosis evaluation of neonatal cardiovascular diseases, including congenital heart disease, patent ductus arteriosus, etcetera. It also facilitates the judgment of the efficacy of treatment and perioperative management. Moreover, the monitoring of plasma BNP concentration provides guidance for the diagnosis, evaluation, and treatment selection of certain neonatal respiratory diseases and neonatal sepsis. This review summarizes the normal BNP values and discusses the application value of BNP in relation to physiological and pathological aspects in neonates.
Cells are compartmentalized by numerous membrane-bounded organelles and membraneless organelles (MLOs) to ensure temporal and spatial regulation of various biological processes. A number of MLOs, such as nucleoli, nuclear speckles and stress granules, exist as liquid droplets within the cells and arise from the condensation of proteins and RNAs via liquid–liquid phase separation (LLPS). By concentrating certain proteins and RNAs, MLOs accelerate biochemical reactions and protect cells during stress, and dysfunction of MLOs is associated with various pathological processes. With the development in this field, more and more relations between the MLOs and diseases have been described; however, these results have not been made available in a centralized resource. Herein, we build MloDisDB, a database which aims to gather the relations between MLOs and diseases from dispersed literature. In addition, the relations between LLPS and diseases were included as well. Currently, MloDisDB contains 771 curated entries from 607 publications; each entry in MloDisDB contains detailed information about the MLO, the disease and the functional factor in the relation. Furthermore, an efficient and user-friendly interface for users to search, browse and download all entries was provided. MloDisDB is the first comprehensive database of the relations between MLOs and diseases so far, and the database is freely accessible at http://mlodis.phasep.pro/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.