Background: Mechanistic studies in animal models implicate a role for saturated fatty acids in neurodegeneration, but validation of this finding in human studies is still lacking. Objective: We investigated how cerebrospinal levels of sphingomyelins (SM) and phosphatidylcholine (PC)-containing saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids associate with total tau and phosphorylated tau (p-tau). Methods: Cerebrospinal fluid (CSF) lipids were measured in two cohorts, a discovery and a confirmation cohort of older non-demented individuals from University of Southern California and Huntington Medical Research Institutes cohorts. Lipid analysis was performed using hydrophilic interaction liquid chromatography, and individual PC and SM lipid species were measured using tandem mass spectrometry. In addition, CSF levels of Aβ 42, total tau, and p-tau-181 were measured using an MSD multiplex assay. Results: The discovery cohort (n = 47) consisted of older individuals and more females compared to the confirmation cohort (n = 46). Notwithstanding the age and gender differences, and a higher p-tau, Aβ 42, and LDL-cholesterol in the discovery cohort, CSF concentrations of dipalmitoyl-PC (PC32a:0) were significantly associated with p-tau in both cohorts. Similarly, total saturated PC but not mono or polyunsaturated PCs correlated with p-tau concentrations in both cohorts. Conclusion: Saturated PC species in CSF associate with early markers of neurodegeneration and are potential early disease progression biomarkers. We propose mechanisms by which saturated PC may promote tau hyperphosphorylation.
Background Inducing brain ATP-binding cassette 1 (ABCA1) activity in Alzheimer’s disease (AD) mouse models is associated with improvement in AD pathology. The purpose of this study was to investigate the effects of the ABCA1 agonist peptide CS-6253 on amyloid-β peptides (Aβ) and lipoproteins in plasma and cerebrospinal fluid (CSF) of cynomolgus monkeys, a species with amyloid and lipoprotein metabolism similar to humans. Methods CS-6253 peptide was injected intravenously into cynomolgus monkeys at various doses in three different studies. Plasma and CSF samples were collected at several time points before and after treatment. Levels of cholesterol, triglyceride (TG), lipoprotein particles, apolipoproteins, and Aβ were measured using ELISA, ion-mobility analysis, and asymmetric-flow field-flow fractionation (AF4). The relationship between the change in levels of these biomarkers was analyzed using multiple linear regression models and linear mixed-effects models. Results Following CS-6253 intravenous injection, within minutes, small plasma high-density lipoprotein (HDL) particles were increased. In two independent experiments, plasma TG, apolipoprotein E (apoE), and Aβ42/40 ratio were transiently increased following CS-6253 intravenous injection. This change was associated with a non-significant decrease in CSF Aβ42. Both plasma total cholesterol and HDL-cholesterol levels were reduced following treatment. AF4 fractionation revealed that CS-6253 treatment displaced apoE from HDL to intermediate-density- and low density-lipoprotein (IDL/LDL)-sized particles in plasma. In contrast to plasma, CS-6253 had no effect on the assessed CSF apolipoproteins or lipids. Conclusions Treatment with the ABCA1 agonist CS-6253 appears to favor Aβ clearance from the brain.
Carrying the apolipoprotein E (ApoE) Ɛ4 allele is associated with an increased risk of cerebral amyloidosis and late-onset Alzheimer’s disease, but the degree to which apoE glycosylation affects its development is not clear. In a previous pilot study, we identified distinct total and secondary isoform-specific cerebral spinal fluid (CSF) apoE glycosylation profiles, with the E4 isoform having the lowest glycosylation percentage (E2 > E3 > E4). In this work, we extend the analysis to a larger cohort of individuals (n = 106), utilizing matched plasma and CSF samples with clinical measures of AD biomarkers. The results confirm the isoform-specific glycosylation of apoE in CSF, resulting from secondary CSF apoE glycosylation patterns. CSF apoE glycosylation percentages positively correlated with CSF Aβ42 levels (r = 0.53, p < 0.0001). These correlations were not observed for plasma apoE glycosylation. CSF total and secondary apoE glycosylation percentages also correlated with the concentration of CSF small high-density lipoprotein particles (s-HDL-P), which we have previously shown to be correlated with CSF Aβ42 levels and measures of cognitive function. Desialylation of apoE purified from CSF showed reduced Aβ42 degradation in microglia with E4 > E3 and increased binding affinity to heparin. These results indicate that apoE glycosylation has a new and important role in influencing brain Aβ metabolism and can be a potential target of treatment.
Carrying the Apolipoprotein E (apoE) ε4 allele is associated with an increased risk of cerebral amyloidosis, but the degree to which apoE glycosylation affects its development is not clear. In a previous pilot study, we identified distinct total and secondary isoform-specific cerebral spinal fluid (CSF) apoE glycosylation profiles, with the apoE4 isoform having the lowest glycosylation percentage (E2 > E3 > E4). In this work, we extend the analysis to a larger cohort of individuals (n = 106), utilizing matched plasma and CSF samples with clinical measures of AD biomarkers. The results confirm the isoform-specific glycosylation of apoE in CSF, resulting from secondary CSF apoE glycosylation patterns. CSF apoE glycosylation percentages positively correlated with CSF Aβ42 levels (r = 0.53, p < 0.0001). These correlations were not observed for plasma apoE glycosylation. CSF total and secondary apoE glycosylation percentages also correlated with the concentration of CSF small high-density lipoprotein (HDL) particles which we have previously shown to be correlated with CSF Aβ42 levels and measures of cognitive function. Desialylation of apoE3 purified from CSF showed increased binding affinity to heparin. These results indicate that apoE glycosylation has a new and important role in influencing brain Aβ metabolism and can be a potential target of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.