Coal and gas outbursts seriously threaten the mining safety of deep coal mines. The evaluation of the risk grade of these events can effectively prevent the occurrence of safety accidents in deep coal mines. Characterized as a high-dimensional, nonlinear, and small-sample problem, a risk evaluation method for deep coal and gas outbursts based on an improved quantum particle swarm optimization support vector machine (IQPSO-SVM) was constructed by leveraging the unique advantages of a support vector machine (SVM) in solving small-sample, high-dimension, and nonlinear problems. Improved quantum particle swarm optimization (IQPSO) is used to optimize the penalty and kernel function parameters of SVM, which can solve the optimal local risk and premature convergence problems of particle swarm optimization (PSO) and quantum particle swarm optimization (QPSO) in the training process. The proposed algorithm can also balance the relationship between the global search and local search in the algorithm design to improve the parallelism, stability, robustness, global optimum, and model generalization ability of data fitting. The experimental results prove that, compared with the test results of the standard SVM, particle swarm optimization support vector machine (PSO-SVM), and quantum particle swarm optimization support vector machine (QPSO-SVM) models, IQPSO-SVM significantly improves the risk assessment accuracy of coal and gas outbursts in deep coal mines. Therefore, this study provides a new idea for the prevention of deep coal and gas outburst accidents based on risk prediction and also provides an essential reference for the scientific evaluation of other high-dimensional and nonlinear problems in other fields. This study can also provide a theoretical basis for preventing coal and gas outburst accidents in deep coal mines and help coal mining enterprises improve their safety management ability.
As a typical public place, a university library has a large collection of books with heavy fire load, dense population, and large flow of people. The situation of safe evacuation in case of fire is very serious. This study utilizes Revit, Pyrosim, and Pathfinder software to research evacuation of a university library. First, a Building Information Modeling (BIM) is constructed based on Revit software in 1:1 scale. Second, the evacuation passage with the highest utilization rate was determined through Pathfinder software. According to the “most unfavorable principle,” the location near it was assumed to be where the fire occurred. Pyrosim software was used to determine the smoke spread, visibility, CO concentration, temperature, and other conditions at each stairway exit in case of fire. Finally, the evacuation situation is compared with that after man-made route planning. The results indicate that evacuation exits 1#, 7#, 13#, 19#, and 23# have the highest utilization rate. The safe evacuation time was 739.275 s, which was shortened to 638.025 s after man-made route planning, a 13.67% increase in evacuation efficiency. Evacuation efficiency can be significantly improved by increasing broadcast guidelines, adding signs, widening staircases, and other optimization suggestions, which can provide reference for the study of evacuation effects in public places and the improvement of the layout of public facilities.
Aiming at the problems of the influencing factors of coal mine dust wettability not being clear and the identification process being complicated, this study proposed a coal mine dust wettability identification method based on a back propagation (BP) neural network optimized by a genetic algorithm (GA). Firstly, 13 parameters of the physical and chemical properties of coal dust, which affect the wettability of coal dust, were determined, and on this basis, the initial weight and threshold of the BP neural network were optimized by combining the parallelism and robustness of the genetic algorithm, etc., and an adaptive GA–BP model, which could reasonably identify the wettability of coal dust was constructed. The extreme learning machine (ELM) algorithm is a single hidden layer neural network, and the training speed is faster than traditional neural networks. The particle swarm optimization (PSO) algorithm optimizes the weight and threshold of the ELM, so PSO–ELM could also realize the identification of coal dust wettability. The results showed that by comparing the four different models, the accuracy of coal dust wettability identification was ranked as GA–BP > PSO–ELM > ELM > BP. When the maximum iteration times and population size of the PSO algorithm and the GA algorithm were the same, the running time of the different models was also different, and the time consumption was ranked as ELM < BP < PSO–ELM < GA–BP. The GA–BP model had the highest discrimination accuracy for coal mine dust wettability with an accuracy of 96.6%. This study enriched the theory and method of coal mine dust wettability identification and has important significance for the efficient prevention and control of coal mine dust as well as occupational safety and health development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.