In the modern aerodynamic design of turbomachinery blades, the geometries of blades often need to be reshaped to achieve better aerodynamic performance by introducing extra parametric design variables. A higher variable dimension will lead to a larger sampling range as well as a sparser sample distribution, which challenges the effectiveness and stability of optimization schemes based on surrogate model by making the model prediction quality even poorer. In this paper, a multi-objective optimization based on Gaussian process model was carried out for a high dimensional design space. Based on the previous two-dimensional optimization, tandem stators of a modern compressor were optimized by the design of sweep and dihedral. The purpose of the study is to improve the aerodynamic performance of the compressor tandem stators as well as to provide an effective optimization scheme for high dimensional multi-objective optimization problems. The design of sweep and dihedral for reshaping the tandem stators consists of a total of 18 design variables. An improvement in total pressure recovery coefficient of at least 0.7% at positive incidence and at least 0.3% at negative incidence was obtained, much larger than that in the previous two-dimensional optimization. The optimization process shows that, by using Gaussian process as the surrogate model and a special sampling strategy, this optimization scheme is effective and efficient to handle this high dimensional space. The aerodynamic influences of design parameters of tandem blades were analyzed in detail and the superiority of sweep and dihedral in reducing aerodynamic loss was confirmed.
A steady and unsteady numerical research is carried out to explore some effects of a specific non-axisymmetric tip clearance layout on the overall performance and stability of an axial compressor stage. For a 4-stage low-speed research compressor (LSRC) in Shanghai Jiao Tong University (SJTU), one-eighth annulus of the inlet guide vane and the first stage rotor was modeled for this study. After the validation for the uniform tip clearance case, a specific non-axisymmetric tip clearance layout is chosen from several random cases generated by the Gaussian Probabilistic Density Function method. Unsteady time-averaged results at the near stall condition show that the chosen non-axisymmetric layout can improve the isentropic efficiency by 1.3% and extend the stall margin by 4%. Detailed analyses on flow fields are carried out to interpret the performance improvement. Due to the circumferential layout of clearance sizes, the inlet mass flow and incidence are redistributed in both the radial and circumferential directions. It leads to blade loading and tip leakage flow varying with the tip clearance size. The quantification of blockage manifests that the blockage arising from the tip leakage flow is significantly alleviated in the non-axisymmetric layout, which leads to improvements in overall performance and stall margin. Transient flow fields at the rotor tip are also analyzed at the near stall condition. For the non-axisymmetric layout, low-momentum regions originating from larger clearance sizes oscillate and develop downstream in one blade passage period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.