In multi-label learning, each object belongs to multiple class labels simultaneously. In the data explosion age, the size of data is often huge, i.e., large number of instances, features and class labels. The high dimension of both the feature and label spaces has posed great challenges to multi-label learning problems, e.g., high time and memory costs. In this paper, we propose a new framework for multi-label learning with a large number of class labels and features, i.e., Multi-Label Learning via Feature and Label Space Dimension Reduction, namely MLL-FLSDR. Specifically, both the feature space and label space are reduced to low dimensional spaces respectively, in which the local structure of data points is utilized to constrain the geometrical structure on both the learned low dimensional spaces and guarantee the qualities of them. Then, an effective multi-label classifier is constructed from the low dimensional feature space to the latent label space. Last, the final prediction for new test data examples can be obtained by recovering from their prediction results in the latent label space with an encoding matrix learned in the previous stage. Extensive comparison experiments with the state-of-the-art approaches manifest the effectiveness of the proposed method MLL-FLSDR.
In multi-label learning, each object is represented by a single instance and associated with multiple labels simultaneously. Existing multi-label learning approaches mainly construct classification models with a fixed set of target labels (observed labels). However, in the big data era, it is difficult to provide a fully complete label set for a data set. In some real applications, there are multiple labels hidden in the data set, especially for those large-scale data sets. In this paper, a novel approach named MLLHL is proposed to not only discover the hidden labels in the training data but also predict these hidden labels and observed labels for unseen examples simultaneously. We assume that the observed labels are just a subset of labels which are selected from the full label set, and the rest ones are omitted by the annotators during the labeling stage. Extensive experiments show the competitive performance of MLLHL against other stateof-the-art multi-label learning approaches. INDEX TERMS Multi-label learning, discovering hidden labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.