Two-dimensional (2D) group IV elemental materials are expected to have similar electronic features to their lightest analogue, graphene. The favorable hybridization state of heavier group IV elements is the sp 3 state, leading to buckled structures instead of a planar one. These buckled structures could modulate the vibrational properties of these 2D materials by introducing a strain effect. In this review, the authors focus on the recent research on the Raman spectra of silicene and germanene from both the theoretical and experimental sides. The abundant superstructures of silicene and germanene are formed due to the different interaction strengths between silicene/germanene and underlying substrate, providing a way to modulate their phonon vibrational properties. Several factors affecting the vibrational modes are discussed, including the strain, doping, coverage and defect effects. Furthermore, the relationship between electron-phonon coupling strength and these factors is established based on the variation of Raman peak position and linewidth. Finally, the authors provide an overview of the general outlook and challenges for this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.