Active polarization imaging techniques have tremendous potential for a variety of underwater applications. However, multiple polarization images as input are necessary for almost all methods, thereby limiting the range of applicable scenarios. In this paper, via taking full advantage of the polarization feature of target reflective light, the cross-polarized backscatter image is reconstructed via introducing an exponential function for the first time, only based on mapping relations of co-polarized image. Compared with rotating the polarizer, the result performs a more uniform and continuous distribution of grayscale. Furthermore, the relationship of degree of polarization (DOP) between the whole scene and backscattered light is established. This leads to an accurate estimation of backscattered noise and high-contrast restored images. Besides, single-input greatly simplifies the experimental process and upgrades efficiency. Experimental results demonstrate the advancement of the proposed method for objects with high polarization under various turbidities.
Underwater active polarization imaging is promising due to its effect of significantly descattering. Polarization-difference is commonly used to filter out backscattered noise. However, the polarization common-mode rejection of target signal has rarely been utilized. In this paper, via taking full advantage of this feature of Stokes vectors S2 which ably avoids interference from target light, the spatial variation of the degree of polarization of backscattered light is accurately estimated, and the whole scene intensity distribution of background is reconstructed by Gaussian surface fitting based on least square. Meanwhile, the underwater image quality measure is applied as optimization feedback, through iterative computations, not only sufficiently suppresses backscattered noise but also better highlights the details of the target. Experimental results demonstrate the effectiveness of the proposed method for highly polarized target in strongly scattering water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.