Intelligent vehicle detection and counting are becoming increasingly important in the field of highway management. However, due to the different sizes of vehicles, their detection remains a challenge that directly affects the accuracy of vehicle counts. To address this issue, this paper proposes a vision-based vehicle detection and counting system. A new high definition highway vehicle dataset with a total of 57,290 annotated instances in 11,129 images is published in this study. Compared with the existing public datasets, the proposed dataset contains annotated tiny objects in the image, which provides the complete data foundation for vehicle detection based on deep learning. In the proposed vehicle detection and counting system, the highway road surface in the image is first extracted and divided into a remote area and a proximal area by a newly proposed segmentation method; the method is crucial for improving vehicle detection. Then, the above two areas are placed into the YOLOv3 network to detect the type and location of the vehicle. Finally, the vehicle trajectories are obtained by the ORB algorithm, which can be used to judge the driving direction of the vehicle and obtain the number of different vehicles. Several highway surveillance videos based on different scenes are used to verify the proposed methods. The experimental results verify that using the proposed segmentation method can provide higher detection accuracy, especially for the detection of small vehicle objects. Moreover, the novel strategy described in this article performs notably well in judging driving direction and counting vehicles. This paper has general practical significance for the management and control of highway scenes.
Using deep learning technology and multi-object tracking method to count vehicles accurately in different traffic conditions is a hot research topic in the field of intelligent transportation. In this paper, first, a vehicle dataset from the perspective of highway surveillance cameras is constructed, and the vehicle detection model is obtained by training using the You Only Look Once (YOLO) version 3 network. Second, an improved multi-scale and multi-feature tracking algorithm based on a kernel correlation filter (KCF) algorithm is proposed to avoid the KCF extracting single features and single-scale defects. Combining the intersection over union (IoU) similarity measure and the row-column optimal association criterion proposed in this paper, matching strategy is used to process the vehicles that are not detected and wrongly detected, thereby obtaining complete vehicle trajectories. Finally, according to the trajectory of the vehicle, the traveling direction of the vehicle is automatically determined, and the setting position of the detecting line is automatically updated to obtain the vehicle count result accurately. Experiments were conducted in a variety of traffic scenes and compared with published data. The experimental results show that the proposed method achieves high accuracy of vehicle detection while maintaining accuracy and precision in tracking multiple objects, and obtains accurate vehicle counting results which can meet real-time processing requirements. The algorithm presented in this paper has practical application for vehicle counting in complex highway scenes.
Traffic incidents endanger the smooth running of vehicles. Congestion caused by traffic incidents has caused a waste of time and fuel and seriously affected transportation efficiency. At present, most methods use manual judgment or image features to detect traffic incidents, but these methods lack timeliness, leading to secondary incidents. For dangerous road sections such as ramp-free and long downhills, this paper proposes an algorithm to quickly detect traffic incidents based on a spatiotemporal map of vehicle trajectories. First, a vehicle dataset from the monitoring perspective is constructed, and an improved YOLOv4 detection algorithm is used to detect images organized as batches. Based on the detection result, the multi-object tracking method of vehicle speed prediction in key frames is used to obtain the vehicle trajectory. Then according to the vehicle trajectory obtained in a single scene, the vehicle trajectory is reidentified and associated in the continuous monitoring scene to construct a long-distance vehicle trajectory spatiotemporal map. Finally, according to the distribution and generation status of the trajectory in the spatiotemporal map, traffic incidents such as vehicle parking, vehicle speeding, and vehicle congestion are analyzed. Experimental results show that the proposed method greatly increases the speed of vehicle detection and tracking and obtains high mAP, MOTA, and MOTP indicators. The global spatiotemporal map constructed by trajectory reidentification can achieve high detection rates for traffic incidents, reduce the average elapsed time, and avoid the problems of the inaccuracy of analyzing image features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.