In the traditional direct visual odometry, it is difficult to satisfy the photometric invariant assumption due to the influence of illumination changes in the real environment, which will lead to errors and drift. This paper proposes an improved direct visual odometry system, which combines luminosity and depth information. The algorithm proposed in this paper uses Kinect 2 to collect RGB images with the corresponding depth information, and selects points with large changes of gray gradient to construct a luminosity error function and uses the corresponding depth information to construct a depth error function. The two error functions are merged into one function and converted into the least squares function of the pose of camera, the Levenberg-Marquardt algorithm is used to solve the camera pose. Finally, the Graph optimization theory and the g2o library are used to optimize the initial pose. Experiments show that the algorithm can reduce the error to a certain extent and reduce the drift caused by illumination changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.