Surface structural texture is designed to achieve specific functional performance for many advanced applications. After a brief review of current manufacturing methods for textural surface, this paper focuses on the study of microstructural surface creation by grinding. The axial and peripheral cross-sections of textured wheels under different dressing overlap ratios U d are illustrated. A set of microstructural texturing models are proposed and the influences of dressing and grinding parameters are discussed. The texture formation is analysed in considering each cutting point in grinding kinematic movement. A significant effect of the grinding contact length on the texture formation is noticed, which defines a texture pattern limitation for grinding to manipulate. Typical surface texture characteristics are introduced to assess the structural surface features and the corresponding theoretical models are validated by experimental results. The relationships between the textural gouge size and the kinematic conditions of dressing and grinding have been delineated for the guidance of grinding texturing strategy. The component waviness on textured components clearly shows the importance of rotational ratio on the layout of microstructural texture. The paper lays down an important foundation for surface microstructural texturing by grinding.
Cylindrical surface grinding can create defined textural patterns on a component with high quantity. This paper presents an experimental investigation of the frictional behaviours of ground cylindrical microstructural surfaces under a well lubrication condition. It shows that the coefficient of friction (COF) of microstructural surface is influenced by different workload and rotation speed. The results reveal that conventional surface roughness parameters do not present the influence of surface microstructure on friction performance well. However, the paper presents an interesting discovery that the friction behaviour of microstructural surfaces created by grinding could be controlled by combining dressing and grinding conditions. Such a discovery provides a logic way to reduce surface friction for energy efficiency applications. A few functional relationships have been established to illustrate the influence of microstructural features on friction. It was found that the ground microstructural surface could improve friction performance up to 20% compared to the smoother surfaces without defined surface textural patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.