The new energy industry development is affected by many factors. Among them, the resources utilization ratio is a major reason for the low productivity of enterprises. As the core problem of cloud computing, the resource allocation problem has been widely concerned by the people, and the resource allocation problem of the new energy industry as the key to energy innovation and transformation should be more paid attention to. In multi-resource cloud computing scenarios, requests made by users often involve multiple types of resources. Traditional resource allocation algorithms have a single optimization object, typically time efficiency. In order to achieve cluster load balancing, utilization of system resources and improvement of system work efficiency, this paper proposes a new cloud computing allocation algorithm based on improved ant colony algorithm. According to the limit conditions of cloud computing environment and computing resources, this paper finds the shortest response time of all resource nodes and gets a set of best available nodes. This method can meet the quality requirements of cloud computing, and the task completion time of the improved algorithm is shorter, the number of algorithm iterations is less, and the load balancing effect is better. Through MATLAB simulation experiments, the effectiveness of the proposed method is verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.