Central venous catheter (CVC) related thrombosis is a major cause of CVC dysfunction in patients under hemodialysis. The aim of our study was to investigate the impact of CVC insertion on hemodynamics in the central veins and to examine the changes in hemodynamic environments that may be related to thrombus formation due to the implantation of CVC. Patient-specific models of the central veins with and without CVC were reconstructed based on computed tomography images. Flow patterns in the veins were numerically simulated to obtain hemodynamic parameters such as time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), relative residence time (RRT), and normalized transverse wall shear stress (transWSS) under pulsatile flow. The non-Newtonian effects of blood flow were also analyzed using the Casson model. The insertion of CVC caused significant changes in the hemodynamic environment in the central veins. A greater disturbance and increase of velocity were observed in the central veins after the insertion of CVC. As a result, TAWSS and transWSS were markedly increased, but most parts of OSI and RRT decreased. Newtonian assumption of blood flow would overestimate the increase in TAWSS after CVC insertion. High wall shear stress (WSS) and flow disturbance, especially the multidirectionality of the flow, induced by the CVC may be a key factor in initiating thrombosis after CVC insertion. Accordingly, approaches to decrease the flow disturbance during CVC insertion may help restrain the occurrence of thrombosis. More case studies with pre-operative and postoperative modeling and clinical follow-up need to be performed to verify these findings. Non-Newtonian blood flow assumption is recommended in computational fluid dynamics (CFD) simulations of veins with CVCs.
Objective: The aim of this study is to numerically evaluate thrombosis risk within occluded coronary arterial fistulas (CAF) with terminal aneurysms, and provide guidance in choosing occlusion positions, with clinical observations as reference.Method: Four patients with CAF were studied, with different occlusion positions in actual treatments. Hemodynamics simulations were conducted, with blood residue predicted using the blood stasis model. Three types of models (untreated model, aneurysm-reserved model and aneurysm-removed model) were studeid for each patient. Four metrics, i.e., proportion of high oscillatory shear index (OSI), area of high OSI, old blood volume fraction (OBVF)) and old blood volume (OBV) was obtained to distinguish the thrombosis risk of different treatments (proximal or distal occlusion), comparing with the follow-up CTA.Results: For all the postopertive models, the high OBVF, high OSI(>0.3) and low time-averaged wall shear stress (TAWSS) regions were mainly at the distal fistula, indicating these regions were prone to thrombosis. The regions where blood residue remains are roughly regions of high OSI, corresponding well with clinical observations. In contrast, TAWSS failed to distinguish the difference in thrombosis risk. Absolute values (area of high OSI, OBV) can better reflect the degree of thrombosis risk between treatment types compared with percentage values (proportion of high OSI, OBVF). By comparing with the actual clinical treatments and observations, the OBV is superior to the area of high OSI in determining treatment type.Conclusion: The OBV, a volumetric parameter for blood stasis, can better account for the CAF thrombosis and reflect the degree of blood stasis compared with OSI or TAWSS, is a more appropriate metric for thrombosis in the fistula. Together with morphological parameters, the OBV could guide clinicians to formulate more appropriate surgical plans, which is of great significance for the preoperative evaluation and treatment prognosis of CAF patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.