In this study, magnetic Mg/Fe hydrotalcite calcined material (M-CHT) was synthesized through co-precipitation and calcination method, and was used to effectively remove nitrate and nitrite from water. M-CHT can restore its original layered structure after the adsorption of nitrate or nitrite, and can be easily separated by the applied magnetic field. The first-order and pseudo-second-order kinetic models (R2 ≥ 0.97) can better describe the adsorption kinetic process. The equilibrium isotherm showed that the Langmuir model provided a better fit to the experimental data than the Freundlich model for nitrates and nitrites. With temperature increased from 298 to 308 K, the maximum adsorption capacity obtained by the Langmuir model increased from 10.60 to 16.90 mg-N/g for nitrate and 7.89 to 14.28 mg-N/g for nitrite, respectively. The adverse effect of coexisting anions ranked in the order of ClO4− > Cl− > SO42− > F− > CO32− > PO43−. The actual Fe2+/Fe3+ value of M-CHT (0.56) is nearly consistent with the theoretical value of 0.5, and the saturation magnetic strength value of M-CHT is 9.15 emu/g, greatly contributing to the solid-liquid separation. Overall, M-CHT with features of magnetic properties and satisfactory adsorption capacity exhibits the greatly promising for application in wastewater purification.
Ileal neobladder construction is a common treatment for patients with bladder cancer after radical cystectomy. However, metabolic disorders caused by transposed bowel segments occur frequently. Bladder tissue engineering is a promising alternative approach. Although numerous studies have reported bladder reconstruction using acellular and cellular scaffolds, there are also disadvantages associated with these methods, such as immunogenicity of synthetic grafts and incompatible mechanical properties of the biomaterials. Here, we engineered an autologous peritoneal graft consisting of a peritoneal sheet and the seromuscular layer from the ileum. Three months after the surgery, compared with the neobladder made from the ileum, the reconstructed neobladder using our new method showed normal function and better gross morphological characteristics. Moreover, histopathological and transcriptomic analysis revealed urothelium-like cells expressing urothelial biomarkers appeared in the neobladder, while no such changes were observed in the control group. Overall, our study provides a new strategy for bladder tissue engineering and informs a variety of future research prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.