Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including agerelated macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.
Grobe, Justin L., Adam P. Mecca, Haoyu Mao, and Michael J. Katovich. Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol 290: H2417-H2423, 2006. First published January 13, 2006 doi:10.1152/ajpheart.01170.2005.-Cardiac remodeling is a hallmark hypertension-induced pathophysiology. In the current study, the role of the angiotensin-(1-7) fragment in modulating cardiac remodeling was examined. Sprague-Dawley rats underwent uninephrectomy surgery and were implanted with a deoxycorticosterone acetate (DOCA) pellet. DOCA animals had their drinking water replaced with 0.9% saline solution. A subgroup of DOCA-salt animals was implanted with osmotic minipumps, which delivered angiotensin-(1-7) chronically (100 ng ⅐ kg Ϫ1 ⅐ min Ϫ1 ). Control animals underwent sham surgery and were maintained on normal drinking water. Blood pressure was measured weekly with the use of the tail-cuff method, and after 4 wk of treatment, blood pressure responses to graded doses of angiotensin II were determined by direct carotid artery cannulation. Ventricle size was measured, and cross sections of the heart ventricles were paraffin embedded and stained using Masson's Trichrome to measure interstitial and perivascular collagen deposition and myocyte diameter. DOCA-salt treatment caused significant increases in blood pressure, cardiac hypertrophy, and myocardial and perivascular fibrosis. Angiotensin-(1-7) infusion prevented the collagen deposition effects without any effect on blood pressure or cardiac hypertrophy. These results indicate that angiotensin-(1-7) selectively prevents cardiac fibrosis independent of blood pressure or cardiac hypertrophy in the DOCA-salt model of hypertension. deoxycorticosterone acetate; blood pressure; cardiac remodeling CARDIAC FIBROSIS is a major facet of hypertensive cardiac disease, and it interferes with the normal function and structure of the myocardium (8,61,62). Increased deposition of basement membrane collagen is a hallmark of the remodeling process, and it results in an increase in cardiac tissue stiffness. This remodeling predisposes the patient to an increased risk of adverse cardiac events, including myocardial ischemia, infarction, arrhythmias, and sudden cardiac death (61). Thus prevention and reversal of cardiac fibrosis are essential in the management of hypertensive heart disease.The renin-angiotensin-aldosterone system (RAAS) has been suggested to participate in the development of end-organ damage in hypertensive patients (2, 11). Support for this concept comes from clinical trials demonstrating that treatment of hypertensive patients with either angiotensin-converting enzyme (ACE) inhibitors (38, 53) or ANG II type 1 (AT 1 ) receptor blockers (41, 60) provides significant protection from, and even reversal of, end-organ damage. Animal studies have also demonstrated that ACE inhibitors and AT 1 receptor antagonists prevent cardiovascular injury (23,55,56) as well as protect against renal (3, 55, 57) and cerebral (55-57) inj...
Conditional tissue-specific reduction in MnSOD induced oxidative stress in mouse RPE, leading to RPE dysfunction, damage to the choroid, and death of photoreceptor cells. The RPE oxidative stress did not cause drusen-like deposits, but the model recapitulated certain key aspects of the pathology of dry AMD and may be useful in testing therapies.
Autosomal dominant retinitis pigmentosa (ADRP) is frequently caused by mutations in RHO, the gene for rod photoreceptor opsin. Earlier, a study on mice carrying mutated rhodopsin transgenes on either RHO þ / þ or RHO þ /-backgrounds suggested that the amount of wild-type rhodopsin affected survival of photoreceptors. Therefore, we treated P23H RHO transgenic mice with adeno-associated virus serotype 5 (AAV5) expressing a cDNA clone of the rhodopsin gene (RHO301) that expressed normal opsin from the mouse opsin promoter. Analysis of the electroretinogram (ERG) demonstrated that increased expression of RHO301 slowed the rate of retinal degeneration in P23H mice: at 6 months, a-wave amplitudes were increased by 100% and b-wave amplitudes by 79%. In contrast, nontransgenic mice injected with AAV5 RHO301 demonstrated a decrease in the ERG, confirming the damaging effect of rhodopsin overproduction in normal photoreceptors. In P23H mice, the increase in the ERG amplitudes was correlated with improvement of retinal structure: the thickness of the outer nuclear layer in RHO301-treated eyes was increased by 80% compared with control eyes. These findings suggest that the wild-type RHO gene can be delivered to rescue retinal degeneration in mice carrying a RHO mutation and that increased production of normal rhodopsin can suppress the effect of the mutated protein. These findings make it possible to treat ADRP caused by different mutations of RHO with the expression of wild-type RHO.
Many mutations in the human rhodopsin gene (RHO) cause autosomal dominant retinitis pigmentosa (ADRP). Our previous studies with a P23H (proline-23 substituted by histidine) RHO transgenic mouse model of ADRP demonstrated significant improvement of retinal function and preservation of retinal structure after transfer of wild-type rhodopsin by AAV. In this study we demonstrate long-term rescue of retinal structure and function by a single virus expressing both RHO replacement cDNA and small interfering RNA (siRNA) to digest mouse Rho and human P23H RHO mRNA. This combination should prevent overexpression of rhodopsin, which can be deleterious to photoreceptors. On the basis of the electroretinogram (ERG) response, degeneration of retinal function was arrested at 2 months postinjection, and the response was maintained at this level until termination at 9 months. Preservation of the ERG response in P23H RHO mice reflected survival of photoreceptors: both the outer nuclear layer (ONL) and outer segments of photoreceptor cells maintained the same thickness as in nontransgenic mice, whereas the control injected P23H eyes exhibited severe thinning of the ONL and outer segments. These findings suggest that delivery of both a modified cDNA and an siRNA by a single adenoassociated viral vector provided long-term rescue of ADRP in this model. Because the siRNA targets human as well as mouse rhodopsin mRNAs, the combination vector may be useful for the treatment of human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.