Graphene can be used as a drug carrier of doxorubicin (DOX) to reduce the side effects of doxorubicin. However, there is limited research on the surface chemical modifications and biological effects of graphene oxide (GO). Therefore, it is necessary to explore the DOX affinity of different oxygen-containing functional groups in the graphene system. We constructed graphene system models and studied the structure and distribution of epoxy and hydroxyl groups on the carbon surface. Based on molecular dynamics simulations and density functional theory (DFT), we investigated the interaction between DOX and either pristine graphene or GO with different ratios of oxygen-containing groups. The hydroxyl groups exhibited a stronger affinity for DOX than the epoxy groups. Therefore, the DOX loading capacity of graphene systems can be adjusted by increasing the ratio of hydroxyl to epoxy groups on the carbon surface.
We have developed a new [4+2] cycloaddition of trifluoromethyl ketimines with 2-alkenyl azaarenes through selective C-F bond cleavage of CF3. The reactions are promoted by 2,2,6,6-tetramethylpiperidine (TMP) under mild conditions...
A copper catalyzed annulation-aromatization of benzyl trifluoromethyl ketimines with 3-acryloyloxazolidin-2-ones for the synthesis of 3-fluoropyridines through double C-F bond cleavages has been developed. In this approach, the annulation occurred between...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.