The prosperity of the cryptocurrency ecosystem drives the needs for digital asset trading platforms. Beyond centralized exchanges (CEXs), decentralized exchanges (DEXs) are introduced to allow users to trade cryptocurrency without transferring the custody of their digital assets to the middlemen, thus eliminating the security and privacy issues of CEX. Uniswap, as the most prominent cryptocurrency DEX, is continuing to attract scammers, with fraudulent cryptocurrencies flooding in the ecosystem. In this paper, we take the first step to detect and characterize scam tokens on Uniswap. We first collect all the transactions related to Uniswap exchanges and investigate the landscape of cryptocurrency trading on Uniswap from different perspectives. Then, we propose an accurate approach for flagging scam tokens on Uniswap based on a guilt-by-association heuristic and a machine-learning powered technique. We have identified over 10K scam tokens listed on Uniswap, which suggests that roughly 50% of the tokens listed on Uniswap are scam tokens. All the scam tokens and liquidity pools are created specialized for the "rug pull" scams, and some scam tokens have embedded tricks and backdoors in the smart contracts. We further observe that thousands of collusion addresses help carry out the scams in league with the scam token/pool creators. The scammers have gained a profit of at least $16 million from 40,165 potential victims. Our observations in this paper suggest the urgency to identify and stop scams in the decentralized finance ecosystem.
BackgroundImmune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited.MethodsIn this study, we compared the single-cell transcriptomes of 77□957 immune cells from 12 species using single-cell RNA-sequencing (scRNA-seq). Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells.ResultsResults revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular crosstalk and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells.ConclusionsThis study is the first to provide a comprehensive analysis of the cross-species single-cell atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.