Purpose
We aimed to assess the efficacy of the Jiang Tang San Huang (JTSH) tablet for the treatment of patients with type 2 diabetes mellitus (T2DM).
Methods
All data for this retrospective cohort study were acquired from the outpatient clinic database of our institution, and all enrolled patients received JTSH tablet for at least two months. Overall, 147 patients were included in the analysis. The primary outcome was patient-reported outcomes on the efficacy of the JTSH tablets using a questionnaire survey. Correlation analysis evaluated the duration of JTSH tablet administration and glycemic control in patients with T2DM. The secondary outcome measures included: changes in glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), 2-hour postprandial blood glucose, homeostasis model assessment of insulin resistance index (HOMA-IR) and homeostasis model assessment of β-cell function (HOMA-β) after 2 months of treatment with JTSH tablets.
Results
Overall,120 patients (81.63%) reported a JTSH tablet treatment satisfaction score of ≥60 points, and believed that JTSH tablets had satisfactory hypoglycemic effects and could improve symptoms. The average duration of JTSH tablet treatment was 2.57±1.45 years. Overall, 111 patients achieved good blood glucose control, while 36 patients had poor glycemic control. Multivariate logistic regression model analysis showed that taking JTSH tablets for 1 year might reduce the risk of poor hypoglycemic effect by 17.00% (Risk ratio=0.830, 95% confidence interval:0.578, 1.021,
P
=0.066). Compared with the baseline data, the levels of HbA1c, FPG and HOMA-IR decreased significantly and HOMA-β levels increased significantly (P<0.05).
Conclusion
Good blood glucose control may be positively correlated with the duration of JTSH tablets administration. Patients with T2DM were satisfied with the anti-diabetic effects of JTSH tablets, which can significantly reduce blood glucose and insulin resistance, and improve the function of islet cells.
Diabetic nephropathy (DN) is the predominant cause of end-stage renal disease globally. Diosgenin (DSG) has been reported to play a protective role in podocyte injury in DN. The present study aimed to explore the role of DSG in DN, as well as its mechanism of action in a high glucose (HG)-induced in vitro model of DN in podocytes. Cell viability, apoptosis, inflammatory response and insulin-stimulated glucose uptake were evaluated using Cell Counting Kit-8, TUNEL, ELISA and 2-deoxy-D-glucose assay, respectively. In addition, the expression of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/NF-κB signaling-related proteins in podocyte cells was measured using western blotting. The results indicated that DSG enhanced the viability of podocytes after HG exposure, but inhibited inflammatory damage and attenuated insulin resistance. Moreover, DSG induced the activation of the AMPK/SIRT1/NF-κB signaling pathway. Furthermore, treatment with compound C, an inhibitor of AMPK, counteracted the protective effects of DSG on HG-induced podocyte cells. Therefore, DSG may be a potential therapeutic compound for the treatment of diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.