Soft open point (SOP) can improve the flexibility and reliability of power supplies; thus, they are widely used in distribution network systems. Traditional single-vector model predictive control (SV-MPC) can quickly and flexibly control the power and current at both ports of the SOP. However, SV-MPC can only select one voltage vector in a sampling time, producing large current ripples, and power fluctuations. In order to solve the above problems, this paper proposes a three-vector-based low complexity model predictive control (TV-MPC). In the proposed control method, two effective voltage vectors and one zero voltage vector are selected in a sampling time. For the two-port SOP, methods are given to judge the sectors on both sides and select the voltage vectors. Furthermore, the calculation method of the distribution time is proposed as well. Finally, the effectiveness of the proposed method is verified by steady-state and dynamic-state simulation results compared with the SV-MPC.
This paper presents a disturbance observer-based model predictive of super-twisting control for Soft Open Point (SOP). First, with the consideration of the disturbances caused by parameter mismatches and unmodelled dynamics, a super-twisting sliding-mode observer (STO) is proposed to observe the disturbances, and the observed disturbances are introduced into the inner-loop as the compensation to improve the anti-disturbance of SOP system. Second, the outer-loop controller is designed by applying the super-twisting sliding-mode control (STC) approach to improve the dynamic performance and robustness. Third, to deal with large current harmonics by traditional model predictive control (MPC), a Three-Vector-based MPC (TV-MPC) is proposed to increase the number of voltage vectors in a sampling time. Finally, it is verified by simulations that the proposed method can reduce current harmonics, DC-side voltage setting time and improve the dynamic performance of SOP system effectively. In case of parameter mismatches, the proposed observer can observe the disturbances correctly to enhance the robustness of the SOP system.
In this paper, a full-order terminal sliding-mode control method is proposed for the rectifier side and the inverter side of the soft open point (SOP). The rectifier-side DC voltage control system consists of the voltage- and current-loops with controllers which are designed using full-order sliding-mode (FOSM) to enhance the dynamic performances and anti-disturbance. The integral type virtual control signal without chattering is designed to compensate for the unmatched uncertainties including external disturbances and some parameter perturbations. The full-order terminal sliding-mode (FOTSM) controller for the current-loop can force the current response to track its reference in finite time. The inverter side power control system is designed to regulate the power. The FOTSM controller for the power-loop ensures the power-tracking accuracy under a disturbed condition. Finally, the simulations demonstrate the effectiveness of the proposed controllers for the rectifier and inverter sides in the soft open point (SOP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.