Set in the downstream riparian zone of Xin’an River Dam, this paper established a 2D transversal coupling flow and solute transport and reaction model by verification within situ groundwater level and temperature. The denitrifying methods and principles in the riparian zone from the perspective of hyporheic exchange were explored, which provided a basis for the engineering techniques for river ecological restoration. Our studies have shown that under the condition of water level fluctuation, a biological method such as adding denitrifying bacteria biomass to a fixed degree (the same below) can greatly increase the denitrifying rate (1.52 g/d) in the riparian zone; chemical methods such as adding organic carbon into the surface water or groundwater can increase the total riparian nitrate removal (8.00–8.18 g) and its efficiency (19.5–20.0%) to a great extent; hydrogeological methods such as silt cleaning of the aquifer surface or local pumping around the contaminated area can increase the total riparian nitrate removal (1.06–14.8 g) to some extent, but correspondingly reduce the denitrifying efficiency (0.95–1.4%); physical methods such as designing the bank form into gentle slope or concave shape can slightly increase the total riparian nitrate removal (0.22–0.52 g) and correspondingly improve the denitrifying efficiency (0.25–0.85%). At the application level of river ecological restoration, integrated adopting the above methods can make the riparian denitrifying effect “fast and good”.
By using a 2D-coupled flow and solute transport and reaction model across the stream-to-riparian continuum, this paper systematically studied the nitrogen-cycling processes driven by a flood wave and their spatial-temporal distributions. The influences on hyporheic nitrogen removal of different waves that vary by amplitude (A), duration (T), wave-type parameter (r) and rising duration (t p ) were investigated. During the surface-water-infiltration period, the aerobic respiration, nitrification and denitrification in the hyporheic zone were gradually enhanced, and aerobic respiration was dominant. During the groundwaterbackflow period, the reactions gradually weakened, and the role of denitrification was improved. The consumption of each solute continuously increased in the whole process, and the groundwater-backflow period corresponded to a larger consumption but at a smaller consumption rate. The reaction rates in space from high to low were as follows: riparian phreatic zone > variable saturated zone > stream bed. Hyporheic nitrogen removal increased with increasing A, T and t p and with decreasing r, which was contrary to the change rule of nitrogen removal efficiency. The hyporheic nitrogen removal exhibited a good linear relationship with the polynomial 'A*T*t p /r', which had great predictive significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.