Nonaqueous sodium-based batteries are ideal candidates for the next generation of electrochemical energy storage devices. However, despite the promising performance at ambient temperature, their low-temperature (e.g., < 0 °C) operation is detrimentally affected by the increase in the electrolyte resistance and solid electrolyte interphase (SEI) instability. Here, to circumvent these issues, we propose specific electrolyte formulations comprising linear and cyclic ether-based solvents and sodium trifluoromethanesulfonate salt that are thermally stable down to −150 °C and enable the formation of a stable SEI at low temperatures. When tested in the Na||Na coin cell configuration, the low-temperature electrolytes enable long-term cycling down to −80 °C. Via ex situ physicochemical (e.g., X-ray photoelectron spectroscopy, cryogenic transmission electron microscopy and atomic force microscopy) electrode measurements and density functional theory calculations, we investigate the mechanisms responsible for efficient low-temperature electrochemical performance. We also report the assembly and testing between −20 °C and −60 °C of full Na||Na3V2(PO4)3 coin cells. The cell tested at −40 °C shows an initial discharge capacity of 68 mAh g−1 with a capacity retention of approximately 94% after 100 cycles at 22 mA g−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.