The falling weight deflectometer (FWD) detection system benefits from its outstanding characteristics of no damage, fast speed, and high precision. The warping deformation of cement concrete pavement occurs due to the temperature difference along the depth of the slab, which makes FWD detect different results under different temperature fields. In this study, we systematically carried out the cement pavement’s temperature field and deflection test. The experimental data were analyzed to obtain the temperature variation law of the top and bottom of the pavement slab every day. By establishing a three-dimensional finite element model of cement pavement with a multi-layer elastic foundation type, the influence of the temperature difference at the bottom of the slab on the deflection of the center point of the slab corner load under different working conditions, different seasons, different loads and whether there is polymer filling in the void area was studied. We summarize the correlation between the temperature difference and the influence coefficient and propose the cement pavement void identification and polymer grouting effect evaluation method considering the temperature effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.