Conventional water quality monitoring has been done for decades in Lake Tanganyika, under different national and international programs. However, these projects utilized monitoring approaches, which were temporally limited, labour intensive and costly. This study examines the use of citizen science to monitor the dynamics of coliform concentrations in Lake Tanganyika as a complementary method to statutory and project-focused measurements. Persons in five coastal communities (Kibirizi, Ilagala, Karago, Ujiji and Gombe) were trained and monitored total coliforms, faecal coliforms and turbidity for one year on a monthly basis, in parallel with professional scientists. A standardized and calibrated Secchi tube was used at the same time to determine turbidity. Results indicate that total and faecal coliform concentrations determined by citizen scientists correlated well to those determined by professional scientists. Furthermore, citizen scientist-based turbidity values were shown to provide a potential indicator for high FC and TC concentrations. As a simple tiered approach to identify increased coliform loads, trained local citizen scientists could use low-cost turbidity measurements with follow up sampling and analysis for coliforms, to inform their communities and regulatory bodies of high risk conditions, as well as to validate local mitigation actions. By comparing the spatial and temporal dynamics of coliform concentrations to local conditions of infrastructure, population, precipitation and hydrology in the 15 sites (3 sites per community) over 12 months, potential drivers of coliform pollution in these communities were identified, largely related to precipitation dynamics and the land use.
Several studies in Lake Tanganyika have effectively employed traditional methods to explore changes in water quality in open waters; however, coastal monitoring has been restricted and sporadic, relying on costly sample and analytical methods that require skilled technical staff. This study aims in validating citizen science water quality collected data (nitrate, phosphate and turbidity) with those collected and measured by professional scientists in the laboratory. A second objective of the study is to use citizen scientist data to identify the patterns of seasonal and spatial variations in nutrient conditions and forecast potential changes based on expected changes in population and climate (to 2050). The results showed that the concentrations of nitrate and phosphate measured by citizen scientists nearly matched those established by professional scientists, with overall accuracy of 91% and 74%, respectively. For total suspended solids measured by professional and turbidity measured by citizen scientists, results show that, using 14 NTU as a cut-off, citizen scientist measurements of Secchi tube depth to identify lake TSS below 7.0 mg/L showed an accuracy of 88%. In both laboratory and citizen scientist-based studies, all measured water quality variables were significantly higher during the wet season compared to the dry season. Climate factors were discovered to have a major impact on the likelihood of exceeding water quality restrictions in the next decades (2050), which could deteriorate lake conditions. Upscaling citizen science to more communities on the lake and other African Great Lakes would raise environmental awareness, inform management and mitigation activities, and aid long-term decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.