The unmanned aerial vehicle communication networks (UAVCN) is an emerging technology of wireless communication. By making use of this technology, the swarm of unmanned aerial vehicles (UAVs) forms a network in which the UAVs can communicate with each other and trigger the information for a particular operation of military and civilian applications. The UAV nodes frequently face design issues and power limitations , which affect the routing mechanism. It is a unique challenge for the researchers to introduce the efficient power and routing mechanism that can improve the performance of UAVs' communication networks. However, the concept of cross layer design and efficient power algorithm proposed in this paper increases the performance of UAVCN. The proposed approach integrates the layers 1,2,3 (physical, link, and network). By implementing this kind of approach, an efficient power optimized link state routing (EPOLSR) protocol introduced in this research modifies the conventional OLSR. The EPOLSR and OLSR are implemented and assessed in the first experiment scenario of UAVs communication networks by using an optimized network engineering tool. Moreover, the EPOLSR, OLSR, AODV, and DSR are implemented and assessed in the second experiment scenario. In these testbed experiments, it has been observed that EPOLSR performs better than other routing protocols for UAVs communication networks by increasing the throughput and minimizing the delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.