Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and tunneling electron microscopy (TEM) studies of two solid vehicle wastes (pollutants) from petrol- and diesel-fueled engines of Kolkata (India) have detected a significant amount of ultrafine particles in the nanometer scale in these wastes. Both powder XRD and selected area electron diffraction from TEM have confirmed the existence of inhomogeneous distribution of nanocrystallites in these pollutants. Energy dispersive X-ray spectrometry shows that these wastes contain mainly carbon and oxygen as the constituent components. These pollutants are magnetic in nature as seen with SQUID magnetometry, and the presence of a high amount of carbon presumably is likely the origin of the magnetic property.
This paper deals with the physical nature of the fly ashes obtained from two thermal power plants, situated in West Bengal, India. The fly ash samples are characterized by using comprehensive techniques with an emphasis on their ultrafine nature. The particle sizes of the samples are estimated using scanning electron microcopy (SEM) and found to lie within 0.18-5.90 μm. For morphology and compositional analysis, we also use SEM coupled with energy dispersive X-ray spectrometry. From X-ray study of the fly ashes the nature of conglomeration is seen to be crystalline, and the major components are mullite (Al6Si2O13) and quartz (SiO2). The magnetic measurement of the fly ash samples was carried out by SQUID magnetometer. (57)Fe Mössbauer spectra are obtained using a conventional constant-acceleration spectrometer with a (57)Co/Rh Mössbauer source. The hyperfine parameters obtained, in general, support the findings as made from XRD analysis and provide a quantitative measure of different iron ions present in the samples. The paper presents experimental data on the physical aspects of the fly ash samples of the thermal power plants which comprise coarse, fine, and ultrafine magnetic particulate materials and attempts to provide an exhaustive analysis.
Physical aspects of tobacco samples, used in some commonly available Indian brands of cigarettes, with emphasis on their magnetic characterization before and after they get burnt into ashes, are described. The present work highlights the ultrafine nature of the cigarette ashes and provides a compositional insight of their constituent particulate matters as revealed by the XRD and SEM studies. Based on the EDX spectra, elemental distributions of different tobacco samples, before and after they get burnt, are presented. In this work, magnetic measurements of the un-burnt tobacco samples are reported. An attempt is made to shed light on the origin of magnetism observed in these samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.