The normal cellular homologue of the acutely transforming oncogene v-raf is c-raf-1, which encodes a serine/threonine protein kinase that is activated by many extracellular stimuli. The physiological substrates of the protein c-Raf-1 are unknown. The mitogen-activated protein (MAP) kinases Erk1 and 2 are also activated by mitogens through phosphorylation of Erk tyrosine and threonine residues catalysed by a protein kinase of relative molecular mass 50,000, MAP kinase-kinase (MAPK-K). Here we report that MAPK-K as well as Erk1 and 2 are constitutively active in v-raf-transformed cells. MAPK-K partially purified from v-raf-transformed cells or from mitogen-treated cells can be deactivated by phosphatase 2A. c-Raf-1 purified after mitogen stimulation can reactivate the phosphatase 2A-inactivated MAPK-K over 30-fold in vitro. c-Raf-1 reactivation of MAPK-K coincides with the selective phosphorylation at serine/threonine residues of a polypeptide with M(r) 50,000 which coelutes precisely on cation-exchange chromatography with the MAPK-K activatable by c-Raf-1. These results indicate that c-Raf-1 is an immediate upstream activator of MAPK-K in vivo. To our knowledge, MAPK-K is the first physiological substrate of the c-raf-1 protooncogene product to be identified.
3-Substituted indolin-2-ones have been designed and synthesized as a novel class of tyrosine kinase inhibitors which exhibit selectivity toward different receptor tyrosine kinases (RTKs). These compounds have been evaluated for their relative inhibitory properties against a panel of RTKs in intact cells. By modifying the 3-substituted indolin-2-ones, we have identified compounds which showed selective inhibition of the ligand-dependent autophosphorylation of various RTKs at submicromolar levels in cells. Structure-activity analysis for these compounds and their relative potency and selectivity to inhibit particular RTKs has determined that (1) 3-[(five-membered heteroaryl ring)methylidenyl]indolin-2-ones are highly specific against the VEGF (Flk-1) RTK activity, (2) 3-(substituted benzylidenyl)indolin-2-ones containing bulky group(s) in the phenyl ring at the C-3 position of indolin-2-ones showed high selectivity toward the EGF and Her-2 RTKs, and (3) the compound containing an extended side chain at the C-3 position of the indolin-2-one (16) exhibited high potency and selectivity when tested against the PDGF and VEGF (Flk-1) RTKs. Recent published crystallographic data for two of these 3-substituted indolin-2-ones provides a rationale to suggest that these compounds may bind in the ATP binding pocket of RTKs. The structure-activity analysis supports the use of subsets of these compounds as specific chemical leads for the development of RTK-specific drugs with broad application for the treatment of human diseases.
A series of 3-indoleacrylonitrile tyrphostins, 2-chloro-3-phenylquinolines, and 3-arylquinoxalines were prepared and tested for inhibition of platelet-derived growth factor receptor tyrosine kinase (PDGF-RTK) activity. The potency of the inhibitors was found to be quinoxalines > quinolines > indoles. Lipophilic groups (methyl, methoxy) in the 6 and 7 positions and phenyl at the 3 position of quinoxalines and quinolines were essential for potency, in contrast to the hydrophilic catechol group in tyrphostins active against EGFR kinase inhibition at different sites. The inhibitors showed selectivity for PDGF and were not active against EGF receptor and HER-2/c-ErbB-2 receptor.
Interleukin 2 (IL-2) is a lymphokine, produced by T cells upon antigenic or mitogenic stimulation, that is a critical regulator of T-cell proliferation. Although the binding of IL-2 to its receptor has been well characterized, the molecular mechanisms by which IL-2 transmits its signal from the membrane to the interior of the cell are poorly understood. Like most other growth factors, IL-2 causes rapid phosphorylation of proteins within its target cells. Unlike many other growth factors, however, the known subunits of the IL-2 receptor lack tyrosine-specific kinase activity, and little is known about the kinases whose activities are regulated by IL-2.Here we show that IL-2 (but not IL-4) induces rapid phosphorylation of the p72-74 serine/threonine-specific kinase encoded by the c-Raf-1 protooncogene in an IL-2-dependent murine T-cell line, CTLL-2, and that this phosphorylation is associated with increased kinase activity in p72-74 Raf-icontaining immune complexes. The concentration dependence of IL-2-mediated elevations in Raf-1 kinase activity correlated well with IL-2-stimulated proliferation of CTLL-2 cells. Furthermore, much of the IL-2-stimulated phorphorylation of p72-74 Raf-1 occurred on tyrosines. To our knowledge, the Raf-1 kinase represents the first endogenous substrate of an IL-2-regulated tyrosine kinase to be identified.Interleukin 2 (IL-2) is thought to be a principal regulator of in vivo immune responses. Despite extensive biochemical characterization of the p50-55 (a) and p70-75 (/3) chains of the IL-2 receptor, molecular cloning and sequencing of their genes, and the reconstitution of high-affinity receptors in heterologous systems through gene transfer (1-5), few details are available regarding the mechanism by which the IL-2 signal is transmitted from the surface of the cell to its interior. Unlike many other growth factor receptors that possess ligand-dependent, tyrosine-specific kinase activity, neither the a chain nor the 3 chain of the IL-2 receptor appears to have intrinsic kinase activity (4, 6, 7). Also, none of the known second messenger pathways that regulate kinase activity through the production of cyclic nucleotides or elevations in cytosolic Ca2' appear to be directly involved in IL-2 signal transduction (for reviews, see refs. 8 and 9). And yet, both tyrosine and serine/threonine phosphorylation of intracellular proteins are rapid events in IL-2-stimulated T cells (10)(11)(12)(13)(14). Clearly, therefore, IL-2 and its receptor must regulate the activity of kinases in lymphocytes, but it has remained obscure as to which ones are involved.Here, we demonstrate that IL-2 specifically induces the phosphorylation and activation, in an IL-2-dependent T-cell clone, CTLL-2, of the p72-74 kinase encoded by the c-Raf-1 protooncogene. This serine/threonine-specific kinase has recently been implicated in signal-transduction events mediated by several tyrosine kinase growth factor receptors and oncogene products (15, 16). Gene transfer experiments using v-raf have previously suggested...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.