Coverage path planning (CPP) is a critical problem in robotics, where the goal is to find an efficient path that covers every point in an area of interest. This work addresses the power-constrained CPP problem with recharge for batterylimited unmanned aerial vehicles (UAVs). In this problem, a notable challenge emerges from integrating recharge journeys into the overall coverage strategy, highlighting the intricate task of making strategic, long-term decisions. We propose a novel proximal policy optimization (PPO)-based deep reinforcement learning (DRL) approach with map-based observations, utilizing action masking and discount factor scheduling to optimize coverage trajectories over the entire mission horizon. We further provide the agent with a position history to handle emergent state loops caused by the recharge capability. Our approach outperforms a baseline heuristic, generalizes to different target zones and maps, with limited generalization to unseen maps. We offer valuable insights into DRL algorithm design for longhorizon problems and provide a publicly available software framework for the CPP problem.
Harvesting data from distributed Internet of Things (IoT) devices with multiple autonomous unmanned aerial vehicles (UAVs) is a challenging problem requiring flexible path planning methods. We propose a multi-agent reinforcement learning (MARL) approach that, in contrast to previous work, can adapt to profound changes in the scenario parameters defining the data harvesting mission, such as the number of deployed UAVs, number, position and data amount of IoT devices, or the maximum flying time, without the need to perform expensive recomputations or relearn control policies. We formulate the path planning problem for a cooperative, non-communicating, and homogeneous team of UAVs tasked with maximizing collected data from distributed IoT sensor nodes subject to flying time and collision avoidance constraints. The path planning problem is translated into a decentralized partially observable Markov decision process (Dec-POMDP), which we solve through a deep reinforcement learning (DRL) approach, approximating the optimal UAV control policy without prior knowledge of the challenging wireless channel characteristics in dense urban environments. By exploiting a combination of centered global and local map representations of the environment that are fed into convolutional layers of the agents, we show that our proposed network architecture enables the agents to cooperate effectively by carefully dividing the data collection task among themselves, adapt to large complex environments and state spaces, and make movement decisions that balance data collection goals, flight-time efficiency, and navigation constraints. Finally, learning a control policy that generalizes over the scenario parameter space enables us to analyze the influence of individual parameters on collection performance and provide some intuition about system-level benefits.Index Terms-Internet of Things (IoT), map-based planning, multi-agent reinforcement learning (MARL), trajectory planning, unmanned aerial vehicle (UAV).
Autonomous deployment of unmanned aerial vehicles (UAVs) supporting next-generation communication networks requires efficient trajectory planning methods. We propose a new end-to-end reinforcement learning (RL) approach to UAVenabled data collection from Internet of Things (IoT) devices in an urban environment. An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance. While previous approaches, learning and non-learning based, must perform expensive recomputations or relearn a behavior when important scenario parameters such as the number of sensors, sensor positions, or maximum flying time, change, we train a double deep Qnetwork (DDQN) with combined experience replay to learn a UAV control policy that generalizes over changing scenario parameters. By exploiting a multi-layer map of the environment fed through convolutional network layers to the agent, we show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters that balance the data collection goal with flight time efficiency and safety constraints. Considerable advantages in learning efficiency from using a map centered on the UAV's position over a noncentered map are also illustrated.
In reinforcement learning (RL), exploiting environmental symmetries can significantly enhance efficiency, robustness, and performance. However, ensuring that the deep RL policy and value networks are respectively equivariant and invariant to exploit these symmetries is a substantial challenge. Related works try to design networks that are equivariant and invariant by construction, limiting them to a very restricted library of components, which in turn hampers the expressiveness of the networks. This paper proposes a method to construct equivariant policies and invariant value functions without specialized neural network components, which we term equivariant ensembles. We further add a regularization term for adding inductive bias during training. In a map-based path planning case study, we show how equivariant ensembles and regularization benefit sample efficiency and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.