Background:The hypoxia marker pimonidazole is a candidate biomarker of cancer aggressiveness. We investigated the transcriptional programme associated with pimonidazole staining in prostate cancer.Methods:Index tumour biopsies were taken by image guidance from an investigation cohort of 52 patients, where 43 patients received pimonidazole before prostatectomy. Biopsy location within the index tumour was verified for 46 (88%) patients, who were included for gene expression profiling and immunohistochemistry. Two independent cohorts of 59 and 281 patients were used for validation.Results:Expression of genes in proliferation, DNA repair and hypoxia response was a major part of the transcriptional programme associated with pimonidazole staining. A signature of 32 essential genes was constructed and showed positive correlation to Ki67 staining, confirming the increased proliferation in hypoxic tumours as suggested from the gene data. Positive correlations were also found to tumour stage and lymph node status, but not to blood prostate-specific antigen level, consistent with the findings for pimonidazole staining. The association with aggressiveness was confirmed in validation cohorts, where the signature correlated with Gleason score and had independent prognostic impact, respectively.Conclusions:Pimonidazole staining reflects an aggressive hypoxic phenotype of prostate cancer characterised by upregulation of proliferation, DNA repair and hypoxia response genes.
The established role of hypoxia-induced signaling in prostate cancer growth, metastasis, and response to treatment suggests that a method to image hypoxia in tumors could aid treatment decisions. Here, we present consumption and supply-based hypoxia (CSH) imaging, an approach that integrates images related to oxygen consumption and supply into a single image. This integration algorithm was developed in patients with prostate cancer receiving hypoxia marker pimonidazole prior to prostatectomy. We exploited the intravoxel incoherent motion (IVIM) signal in diagnostic diffusion-weighted (DW) magnetic resonance (MR) images to generate separate images of the apparent diffusion coefficient (ADC) and fractional blood volume (fBV). ADC and fBV correlated with cell density (CD) and blood vessel density (BVD) in histology and whole-mount sections from 35 patients, thus linking ADC to oxygen consumption and fBV to oxygen supply. Pixel-wise plots of ADC versus fBV were utilized to predict the hypoxia status of each pixel in a tumor and to visualize the predicted value in a single image. The hypoxic fraction (HF) of CSH images correlated strongly ( = 0.66; = 41) with pimonidazole immunoscore (HS); this relationship was validated in a second pimonidazole cohort ( = 0.54; = 54). We observed good agreement between CSH images and pimonidazole staining in whole-mount sections. HF correlated with tumor stage and lymph node status, consistent with findings for HS Moreover, CSH imaging could be applied on histologic CD and BVD images, demonstrating transferability to a histopathology assay. Thus, CSH represents a robust approach for hypoxia imaging in prostate cancer that could easily be translated into clinical practice. These findings present a novel imaging strategy that indirectly measures tumor hypoxia and has potential application in a wide variety of solid tumors and other imaging modalities. http://cancerres.aacrjournals.org/content/canres/78/16/4774/F1.large.jpg .
Background:Histone deacetylase inhibitors (HDACis) like vorinostat are promising radiosensitisers in prostate cancer, but their effect under hypoxia is not known. We investigated gene expression associated with radiosensitisation of normoxic and hypoxic prostate cancer cells by vorinostat.Methods:Cells were exposed to vorinostat under normoxia or hypoxia and subjected to gene expression profiling before irradiation and clonogenic survival analysis.Results:Pretreatment with vorinostat led to radiosensitisation of the intrinsically radioresistant DU 145 cells, but not the radiosensitive PC-3 and 22Rv1 cells, and was independent of hypoxia status. Knockdown experiments showed that the sensitisation was not caused by repression of hypoxia-inducible factor HIF1 or tumour protein TP53. Global deregulation of DNA repair and chromatin organisation genes was associated with radiosensitisation under both normoxia and hypoxia. A radiosensitisation signature with expression changes of 56 genes was generated and valid for both conditions. For eight signature genes, baseline expression also correlated with sensitisation, showing potential as pretreatment biomarker. The hypoxia independence of the signature was confirmed in a clinical data set.Conclusions:Pretreatment with HDACi may overcome radioresistance of hypoxic prostate tumours by similar mechanisms as under normoxia. We propose a gene signature to predict radiosensitising effects independent of hypoxia status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.