We have recently shown that a deletion in the Large gene, encoding a putative glycosyltransferase, is the molecular defect underlying the myodystrophy (previously myd; now Large(myd)) mouse. Here we show that the muscular dystrophy phenotype is not confined to skeletal muscle, but is also present in the heart and tongue. Immunohistochemistry indicates disruption of the dystrophin-associated glycoprotein complex (DGC) in skeletal and cardiac muscle. Quantitative western blotting shows a general increase in the expression of DGC proteins and of dysferlin and caveolin-3 in mutant skeletal muscle. In contrast, the expression of DGC proteins is reduced in cardiac muscle. Overlay assays show loss of laminin binding by alpha-dystroglycan in Large(myd) skeletal and cardiac muscle and in brain. We also show that the phenotype of Large(myd) mice is not restricted to muscular dystrophy, but also includes ophthalmic and central nervous system (CNS) defects. Electroretinograms of homozygous mutant mice show gross abnormalities of b-wave characteristics, indicative of a complex defect in retinal transmission. The laminar architecture of the cortices of the cerebrum and the cerebellum is disturbed, indicating defective neuronal migration. Thus, the phenotype of the Large(myd) mouse shows similarities to the heterogeneous group of human muscle eye brain diseases characterized by severe congenital muscular dystrophy, eye abnormalities and CNS neuronal migration defects. These diseases include Fukuyama-type muscular dystrophy and muscle-eye-brain disease, both of which are also due to mutations in predicted glycosylation enzymes. Therefore, the Large(myd) mouse represents an important animal model for studying the function of glycosylation in muscle, brain and retina.
ObjectPromoting repair of central nervous system (CNS) white matter represents an important approach to easing the course of a number of tragic neurological diseases. For this purpose, strategies are currently being evaluated for transplanting cells capable of generating new oligodendrocytes into areas of demyelination and/or enhancing the potential of endogenous stem/precursor cells to give rise to new oligodendrocytes. Emerging evidence, however, indicates that increasing the presence of cells capable of forming new myelin sheaths is not sufficient to promote repair because of unknown inhibitors that accumulate in lesions as a consequence of myelin degeneration and impair the generation of new oligodendrocytes. The aim of the present study was to characterize the nature of the inhibitory molecules present in myelin.MethodsDifferentiation of primary rat oligodendrocyte precursor cells (OPCs) in the presence of CNS and peripheral nervous system myelin was assessed by immunocytochemical methods. The authors further characterized the nature of the inhibitors by submitting myelin membrane preparations to biochemical precipitation and digestion. Finally, OPCs were grown on purified Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, the most prominent inhibitors of axon regeneration.ResultsMyelin membrane preparations induced a differentiation block in OPCs that was associated with down-regulation of expression of the transcription factor Nkx2.2. The inhibitory activity in myelin was restricted to the CNS and was predominantly associated with white matter. Furthermore, the results demonstrate that myelin proteins that are distinct from the most prominent inhibitors of axon outgrowth are specific inhibitors of OPC differentiation.ConclusionsThe inhibitory effect of unknown myelin-associated proteins should be considered in future treatment strategies aimed at enhancing CNS repair.
Acidosis, energy depletion, overstimulation by excitatory amino acids, and free radical-mediated reactions are the major current concepts for the explanation of damage and death resulting from asphyxia. Impaired phosphorylation by protein kinase C (PKC) represents another mechanism incriminated for cell death. We used an unsophisticated perinatal asphyxia model to study heart protein kinases PKC and cyclin dependent kinase (CDK). Tissue pH, ATP, the antioxidant enzymes superoxide dismutase, catalase, and glutathion peroxidase, lipid peroxidation products, carbonyls, and aromatic hydroxylation were also tested. Electron spin resonance was applied to demonstrate the possible presence of radical adducts. An ELISA method was used to determine cell death. PKC activity and mRNA decreased with the length of the asphyctic periods and were paralleled by CDK and pH, whereas cell death gradually increased. No evidence was found for the involvement of active oxygen species or a radical adduct, and no energy depletion was observed. We conclude that impaired protein phosphorylation and/or acidosis may play a role in the pathobiochemistry of death from perinatal asphyxia in the rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.