ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome. To date, it contains quantitative data from 78 projects totalling over 19k LC–MS/MS experiments. A standardized analysis pipeline enables comparisons between multiple datasets to facilitate the exploration of protein expression across hundreds of tissues, body fluids and cell lines. We recently extended the data model to enable the storage and integrated visualization of other quantitative omics data. This includes transcriptomics data from e.g. NCBI GEO, protein–protein interaction information from STRING, functional annotations from KEGG, drug-sensitivity/selectivity data from several public sources and reference mass spectra from the ProteomeTools project. The extended functionality transforms ProteomicsDB into a multi-purpose resource connecting quantification and meta-data for each protein. The rich user interface helps researchers to navigate all data sources in either a protein-centric or multi-protein-centric manner. Several options are available to download data manually, while our application programming interface enables accessing quantitative data systematically.
ProteomicsDB (https://www.ProteomicsDB.org) started as a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. The data types and contents grew over time to include RNA-Seq expression data, drug-target interactions and cell line viability data. In this manuscript, we summarize new developments since the previous update that was published in Nucleic Acids Research in 2017. Over the past two years, we have enriched the data content by additional datasets and extended the platform to support protein turnover data. Another important new addition is that ProteomicsDB now supports the storage and visualization of data collected from other organisms, exemplified by Arabidopsis thaliana. Due to the generic design of ProteomicsDB, all analytical features available for the original human resource seamlessly transfer to other organisms. Furthermore, we introduce a new service in ProteomicsDB which allows users to upload their own expression datasets and analyze them alongside with data stored in ProteomicsDB. Initially, users will be able to make use of this feature in the interactive heat map functionality as well as the drug sensitivity prediction, but ultimately will be able to use all analytical features of ProteomicsDB in this way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.