Previous studies in electrophysiology have provided consistent evidence for a relationship between neural oscillations in different frequency bands and the maintenance of information in working memory (WM). While the amplitude and cross-frequency coupling of neural oscillations have been shown to be modulated by the number of items retained during WM, interareal phase synchronization has been associated with the integration of distributed activity during WM maintenance. Together, these findings provided important insights into the oscillatory dynamics of cortical networks during WM. However, little is known about the cortical regions and frequencies that underlie the specific maintenance of behaviorally relevant information in WM. In the current study, we addressed this question with magnetoencephalography and a delayed match-to-sample task involving distractors in 25 human participants. Using spectral analysis and beamforming, we found a WM load-related increase in the gamma band (60 -80 Hz) that was localized to the right intraparietal lobule and left Brodmann area 9 (BA9). WM-load related changes were also detected at alpha frequencies (10 -14 Hz) in Brodmann area 6, but did not covary with the number of relevant WM-items. Finally, we decoded gamma-band source activity with a linear discriminant analysis and found that gamma-band activity in left BA9 predicted the number of target items maintained in WM. While the present data show that WM maintenance involves activity in the alpha and gamma band, our results highlight the specific contribution of gamma band delay activity in prefrontal cortex for the maintenance of behaviorally relevant items.
We were able to find specific behavioral responses and neural activation patterns for two parts of body image in anorexia nervosa and healthy controls. Thus, the present results underline the importance of developing research and therapeutic strategies that target the two different aspects of body image separately.
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development.
Working memory, the short-term maintenance and manipulation of information, relies strongly on neural activity in the frontal cortex. Understanding the functional role of this activity is a prerequisite for the understanding of cognitive control mechanisms. Functional imaging studies in human participants have attempted to reveal neural correlates of the subdivision of visual working memory into different processes (maintenance vs manipulation) and according to the type of memorized content. Here, we show, using functional magnetic resonance imaging, a content-specific dissociation of frontal activity, with dorsal premotor areas supporting both maintenance and manipulation of spatial features and more ventral areas supporting maintenance and manipulation of color. Manipulation-specific activity was observed in the anterior middle frontal gyrus, the inferior frontal junction, and the inferior parietal lobe bilaterally. These areas have been implicated in cognitive control, and their activation by the manipulation task conforms to the demand on central executive resources in this condition. We suggest that the enhanced demand on cognitive resources in manipulation compared with maintenance was met by interplay of content-and task-specific modules in a frontoparietal network.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.