The Pim family of proto-oncogenes encodes a distinct class of serine/threonine kinases consisting of PIM1, PIM2, and PIM3. Although the Pim genes are evolutionarily highly conserved, the contribution of PIM proteins to mammalian development is unclear. PIM1-deficient mice were previously described but showed only minor phenotypic aberrations. To assess the role of PIM proteins in mammalian physiology, compound Pim knockout mice were generated. Mice lacking expression of Pim1, Pim2, and Pim3 are viable and fertile. However, PIM-deficient mice show a profound reduction in body size at birth and throughout postnatal life. In addition, the in vitro response of distinct hematopoietic cell populations to growth factors is severely impaired. In particular, PIM proteins are required for the efficient proliferation of peripheral T lymphocytes mediated by synergistic T-cell receptor and interleukin-2 signaling. These results indicate that members of the PIM family of proteins are important but dispensable factors for growth factor signaling.
Genetic screens carried out in lower organisms such as yeast, Drosophila melanogaster and Caenorhabditis elegans have revealed many signaling pathways. For example, components of the RAS signaling cascade were identified using a mutant eye phenotype in D. melanogaster as a readout. Screening is usually based on enhancing or suppressing a phenotype by way of a known mutation in a particular signaling pathway. Such in vivo screens have been difficult to carry out in mammals, however, owing to their relatively long generation times and the limited number of animals that can be screened. Here we describe an in vivo mammalian genetic screen used to identify components of pathways contributing to oncogenic transformation. We applied retroviral insertional mutagenesis in Myc transgenic (E mu Myc) mice lacking expression of Pim1 and Pim2 to search for genes that can substitute for Pim1 and Pim2 in lymphomagenesis. We determined the chromosomal positions of 477 retroviral insertion sites (RISs) derived from 38 tumors from E mu Myc Pim1(-/-) Pim2(-/-) mice and 27 tumors from E mu Myc control mice using the Ensembl and Celera annotated mouse genome databases. There were 52 sites occupied by proviruses in more than one tumor. These common insertion sites (CISs) are likely to contain genes contributing to tumorigenesis. Comparison of the RISs in tumors of Pim-null mice with the RISs in tumors of E mu Myc control mice indicated that 10 of the 52 CISs belong to the Pim complementation group. In addition, we found that Pim3 is selectively activated in Pim-null tumor cells, which supports the validity of our approach.
Insertional mutagens such as viruses and transposons are a useful tool for performing forward genetic screens in mice to discover cancer genes. These screens are most effective when performed using hundreds of mice, however until recently a major limitation to performing screens on this scale has been the cost effective isolation and sequencing of insertion sites. Here we present a method for the high-throughput isolation of insertion sites using a highly efficient splinkerette-PCR method coupled with capillary or 454 sequencing. This protocol includes a description of the procedure for DNA isolation, DNA digestion, linker or splinkerette ligation, primary and secondary PCR amplification, and sequencing. This method, which takes about 1 week to perform, has allowed us to isolate hundreds of thousands of insertion sites from mouse tumours and, unlike other methods, has been specifically optimised for the isolation of insertion sites generated with the murine leukaemia virus (MuLV), and can easily be performed in 96 well plate format for the efficient multiplex isolation of insertion sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.