ObjectiveIn large cohort studies comorbidities are usually self-reported by the patients. This way to collect health information only represents conditions known, memorized and openly reported by the patients. Several studies addressed the relationship between self-reported comorbidities and medical records or pharmacy data, but none of them provided a structured, documented method of evaluation. We thus developed a detailed procedure to compare self-reported comorbidities with information on comorbidities derived from medication inspection. This was applied to the data of the German COPD cohort COSYCONET.MethodsApproach I was based solely on ICD10-Codes for the diseases and the indications of medications. To overcome the limitations due to potential non-specificity of medications, Approach II was developed using more detailed information, such as ATC-Codes specific for one disease. The relationship between reported comorbidities and medication was expressed by a four-level concordance score.ResultsApproaches I and II demonstrated that the patterns of concordance scores markedly differed between comorbidities in the COSYCONET data. On average, Approach I resulted in more than 50% concordance of all reported diseases to at least one medication. The more specific Approach II showed larger differences in the matching with medications, due to large differences in the disease-specificity of drugs. The highest concordance was achieved for diabetes and three combined cardiovascular disorders, while it was substantial for dyslipidemia and hyperuricemia, and low for asthma.ConclusionBoth approaches represent feasible strategies to confirm self-reported diagnoses via medication. Approach I covers a broad spectrum of diseases and medications but is limited regarding disease-specificity. Approach II uses the information from medications specific for a single disease and therefore can reach higher concordance scores. The strategies described in a detailed and reproducible manner are generally applicable in large studies and might be useful to extract as much information as possible from the available data.
The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.
A 44-year-old man ingested 83 mg/kg Thiomersal. He developed gastritis, renal tubular failure, dermatitis, gingivitis, delirium, coma, polyneuropathy and respiratory failure. Treatment was symptomatic plus gastric lavage and the oral chelating agents dimercaptopropane sulfonate and dimercaptosuccinic acid. The patient recovered completely. Maximum mercury concentrations were blood 14 mg/L, serum 1.7 mg/L, urine 10.7 mg/L, and cerebrospinal fluid 0.025 mg/L. Mercury concentration in blood declined with two velocities: first with half-time 2.2 days, then with half-time 40.5 days. The decline of mercury concentration in blood, urinary mercury excretion, and renal mercury clearance were not substantially influenced by chelation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.