With the growing size and use of night light time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night light data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g., airports and prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15–20% of the mean. Greenhouses and flares, however, are not stable sources. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes.
Abstract. From a geoinformation science perspective real estate portals apply non-spatial methods to analyse and visualise rental price data. Their approach shows considerable shortcomings. Portal operators neglect real estate agents' mantra that exactly three things are important in real estates: location, location and location [16]. Although real estate portals record the spatial reference of their listed apartments, geocoded address data is used insufficiently for analyses and visualisation, and in many cases the data is just used to "pin" map the listings. To date geoinformation science, spatial statistics and geovisualization play a minor role for real estate portals in analysing and visualising their housing data. This contribution discusses the analytical and geovisual status quo of real estate portals and addresses the most serious deficits of the employed non-spatial methods. Alternative analysing approaches from geostatistics, machine learning and geovisualization demonstrate potentials to optimise real estate portals´ analysing and visualisation capacities.
With the growing size and use of night lights time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night lights data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g. airports, prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15-20% of the mean. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances, and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes.
From a geoinformation science perspective real estate portals apply non-spatial methods to analyse and visualise rental price data. Their approach shows considerable shortcomings. Portal operators neglect real estate agents' mantra that exactly three things are important in real estates: location, location and location (Stroisch, 2010). Although real estate portals retacord the spatial reference of their listed apartments, geocoded address data is used insufficiently for analyses and visualisation, and in many cases the data is just used to “pin” map the listings. To date geoinformation science, spatial statistics and geovisualization play a minor role for real estate portals in analysing and visualising their housing data. This contribution discusses the analytical and geovisual status quo of real estate portals and addresses the most serious deficits of the employed non-spatial methods. Alternative analysing approaches from geostatistics, machine learning and geovisualization demonstrate potentials to optimise real estate portals´ analysing and visualisation capacities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.