We investigate the equilibration process of the strongly coupled quartic Fermi–Pasta–Ulam–Tsingou model by adding Langevin baths to the ends of the chain. The time evolution of the system is investigated by means of extensive numerical simulations and shown to match the results expected from equilibrium statistical mechanics in the time-asymptotic limit. Upon increasing the nonlinear coupling, the thermalization of the energy spectrum displays an increasing asymmetry in favor of small-scale, high-frequency modes, which relax significantly faster than the large-scale, low-frequency ones. The global equilibration time is found to scale linearly with system size and shown to exhibit a power-law decay with the strength of the nonlinearity and temperature. Nonlinear interaction adds to energy distribution among modes, thus speeding up the thermalization process.
Engineering long-range interactions in experimental platforms has been achieved with great success in a large variety of quantum systems in recent years. Inspired by this progress, we propose a generalization of the classical Hamiltonian mean-field model to fermionic particles. We study the phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromagnetic interactions as a function of temperature and hopping. At zero temperature, small charge fluctuations drive the many-body system through a first-order quantum phase transition from an ordered to a disordered phase. At higher temperatures, the fluctuation-induced phase transition remains first order initially and switches to second-order only at a tricritical point. Our results offer an intriguing example of tricriticality in a quantum system with long-range couplings, which bears direct experimental relevance. The analysis is performed by exact diagonalization and mean-field theory.
We study the transition from integrability to chaos for the three-particle Fermi–Pasta–Ulam–Tsingou (FPUT) model. We can show that both the quartic β-FPUT model (α=0) and the cubic one (β=0) are integrable by introducing an appropriate Fourier representation to express the nonlinear terms of the Hamiltonian. For generic values of α and β, the model is non-integrable and displays a mixed phase space with both chaotic and regular trajectories. In the classical case, chaos is diagnosed by the investigation of Poincaré sections. In the quantum case, the level spacing statistics in the energy basis belongs to the Gaussian orthogonal ensemble in the chaotic regime, and crosses over to Poissonian behavior in the quasi-integrable low-energy limit. In the chaotic part of the spectrum, two generic observables obey the eigenstate thermalization hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.