The levels and cellular localization of mRNA for complement C1q and C3 were examined by RNA gel blot and nonradioactive in situ hybridization in the frontal cortex of patients with Alzheimer's disease (AD) and age-matched controls. We found that the hybridization signal for C1q mRNA was markedly increased (approx. 3.5-fold) in the frontal cortex of AD patients compared to that in age-matched controls. In contrast to previous reports we also found that the levels of C3 mRNA, although well expressed, did not differ significantly between AD cases and age-matched controls. Nonradioactive in situ hybridization using digoxigenin-labeled ribo-probes revealed that transcripts coding for both C1q and C3 were closely associated with neurons. These results support the hypothesis that complement could play a role in neuronal degeneration which has been observed in the brain of AD patients.
Kindled seizures are widely used as a model for epileptogenesis. Although the achievement of kindling criterion is known to require time to develop, the precise developmental period has not been identified. We now report that optimal achievement of the kindling criterion in the Sprague-Dawley rat is associated with a critical inter-stimulus interval of 24 to 26 days. We show that highly efficient kindling can be achieved with only two subconvulsive doses of pentylenetetrazole so long as they are given 25 days apart. Using Northern blot hybridization we show that the increased seizure susceptibility at 25 days coincides with an increased expression of the plasticity-associated proteins, growth-associated protein-43 (GAP-43), microtubule-associated protein 1B (MAP1B), and tissue plasminogen activator (tPA) mRNAs in the hippocampus. By in situ hybridization and immunocytochemistry on tissue sections, we also show an increased expression for GAP-43 in the polymorphic layer of the dentate gyrus, mossy fibers, and pyramidal cells in the CA3 region of the hippocampus. The demonstration of a long, defined developmental interval for inducing the kindling criterion should enable a dissection of the cellular and genetic events underlying this phenomenon in the rat.
Although stroke in humans usually afflicts the elderly, most experimental studies on the nature of cerebral ischemia have used young animals. This is especially important when studying restorative processes that are age dependent. To explore the potential of older animals to initiate regenerative processes after cerebral ischemia, the authors studied the expression of the juvenile-specific cytoskeletal protein, microtubule-associated protein (MAP) 1B, and the adult-specific protein, MAP2, in male Sprague-Dawley rats at 3 months and 20 months of age. The levels of MAP1B and MAP2 transcripts and the corresponding proteins declined with increasing age in the hippocampus. In the cortex, the levels of the transcripts did not change significantly with age, but the morphologic features of immunostained fibers were clearly affected by age; that is, cortical MAP1B fibers became thicker, and MAP2 fibers, more diffuse, in aged rats. Focal cerebral ischemia, produced by reversible occlusion of the right middle cerebral artery, resulted in a large decrease in the expression of both MAP1B and MAP2 in the infarct core at the messenger ribonucleic acid and protein levels. However, at 1 week after the stroke, there was vigorous expression of MAP1B and its messenger ribonucleic acid, as well as MAP2 protein, in the border zone adjacent to the infarct of 3-month-old and 20 month-old male Sprague-Dawley rats. The upregulation of these key cytologic elements generally was diminished in aged rats compared with young animals, although the morphologic features of fibers in the infarct border zone were similar in both age groups. These results suggest that the regenerative potential of the aged rat brain appears to be competent, although attenuated, at least with respect to MAP1B and MAP2 expression up to 20 months of age.
Background: Normal aging is associated with impairments in learning and memory and motor function. One viable hypothesis is that these changes reflect an age-related decrease in brain plasticity. Objective: The aim of the present study was to identify age-related changes in the time course of expression of the axonal growth associated protein 43 (GAP-43) in a rat model of brain plasticity. Methods: We examined by Northern blotting, in situ hybridization, and immunohistochemistry the effects of age on the time course of the expression GAP-43 following pentylenetetrazole-induced seizure in the hippocampus of 3-, 18-, and 28-month-old rats. Results: In this model of brain plasticity, young rats displayed a decrease in GAP-43 mRNA levels in CA1, CA3, and polymorphic regions, lasting from 10 h to 3 days after seizure. This was followed by recovery, with peak expression between days 10 and 20. The baseline levels of GAP-43 mRNA decreased with age, especially in the CA3 region. Despite lower baseline levels, middle-aged rats showed the same pattern of upregulation of GAP-43 mRNA expression as the young animals. Old rats showed only minimal upregulation, however, and this occurred only in the polymorphic layer. The level GAP-43 protein itself was higher in old control rats than in the other two control groups, a condition that was transiently reversed by seizure activity. Conclusions: Middle-aged rats are still capable of a sustained, though diminished, response to seizure activity, while old rats lose this ability. Disruption of the temporal and anatomical coordination of expression of GAP-43 may contribute to the general decline in brain plasticity with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.