The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1µm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg (1-x) Cd x Te. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the fringe tracker of the VLT instrument GRAVITY. Initial results will be presented. An outlook will be given on the potential of APD technology to be employed in large format near infrared science detectors. Several of the results presented here have also been shown to a different audience at the Scientific Detector Workshop in October 2013 in Florence but this paper has been updated with new results [1].
The performance of the current high speed near infrared HgCdTe sensors operating in fringe trackers, wavefront sensors and tip-tilt sensors is severely limited by the noise of the silicon readout interface circuit (ROIC), even if state-of-the-art CMOS designs are used. A major improvement can only be achieved by the amplification of the photoelectron signal directly at the point of absorption by means of avalanche gain inside the infrared pixel. Unlike silicon, HgCdTe offers noiseless avalanche gain. This has been verified with the LPE grown 320x256 pixel λ c =2.5 μm HgCdTe eAPD arrays from SELEX both on a prototype ROIC called SWALLOW and on a newly developed ROIC, specifically designed for AO applications, called SAPHIRA. The novel features of the new SAPHIRA ROIC, which has 32 parallel video channels operating at 5 MHz, will be described, together with the new high speed NGC data acquisition system. Performance results will be discussed for both ROICs. The LPE material on the SWALLOW prototype was excellent and allowed operation at an APD gain as high as 33. Unfortunately, the LPE material of the first devices on the SAPHIRA ROIC suffers from problems which are now understood. However, due to the excellent performance of the SAPHIRA ROIC even with the limitations of present HgCdTe material, it is possible with simple double correlated sampling to detect test patterns with signal levels of 1 electron. An outlook will be given on further developments of heterojunctions grown by MOVPE, which eventually may replace eAPD arrays grown by LPE.
This paper presents a fully integrated PVDF-on-silicon pyroelectric sensor array. The pyroelectric sensor has two main features: a subpixel low noise charge amplifier and a self-absorbing layered structure. The integrated low noise charge amplifier is implemented in a standard CMOS process technology. It is located directly under the sensing structure, maximizing the pixel fill factor. The self-absorbing pyroelectric sensor is a three-layer stack, consisting of a conductive polymer as an absorber layer and front electrode, a thin PVDF film as the pyroelectric material, and a rear metal layer acting as a reflector layer and rear electrode. The manufacture of the pyroelectric sensor array requires five maskless post-CMOS processing steps and is compatible with any n-well, double metal, double polysilicon, CMOS process. The array has an average pixel voltage sensitivity of 2200 V/W at 100 Hz, an NEP of 2.4/spl times/10/sup -11/ W//spl radic/Hz at 100 Hz, and a specific detectivity of 4.4/spl times/10/sup 8/ cm /spl radic/Hz/W at 100 Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.