PurposeThe anterior cruciate ligament is loaded through valgus moment, vertical ground reaction force, and internal rotation moment. The aim of this study was to compare the timing of force peaks during early stance between youth girls and boys.MethodsOne-hundred and twenty-nine team sport athletes aged 9–12 completed a total of 2540 cutting maneuvers captured with an 8-camera motion capture system. Timing of early force peaks was analyzed within 100 ms after ground contact.ResultsGenders showed different mean (95% CI) time to peak valgus—(32 ms (30–33 ms) vs 37 ms (36–38 ms), P < 0.001) and time to peak internal rotation moments (36 ms (35–37 ms) vs 38 ms (37–39 ms), P = 0.029) but not time to peak vertical ground reaction force [38 ms (37–40 ms) vs 37 ms (36–38 ms, n.s.)]. Girls showed a smaller time between vertical ground reaction force and valgus moment peaks (mean (95% CI) of 1 ms (1–2 ms) vs 7 ms (5–9 ms), P < 0.001), and valgus- and internal rotation moment peaks (0 ms (− 2 to 1.0 ms) vs − 5 ms (− 6 to − 3 ms), P = 0.0003) but not between internal rotation moment and vertical ground reaction force.ConclusionsConcurrent force peaks are more common for girls compared with boys, leading to more frequent multi-planar loading of the knee. Timing may explain sex-dependent risk of ACL injuries. Exposure to repeated cutting movements may result in greater ACL injury risk due to timing of knee forces as well as magnitude. Such exposure should be minimized for at-risk athletes.Level of evidenceIII.
Cluster analysis of knee abduction moment waveforms may be useful to examine biomechanical data. The aim of this study was to analyze if the knee abduction moment waveform of early peaks, consistent with anterior cruciate ligament injury mechanisms, was associated with foot-trunk distance, knee kinematics, and heel strike landing posture, all of which have been observed during anterior cruciate ligament injuries. One hundred and seventy-seven adolescent athletes performed cutting maneuvers, marker-based motion capture collected kinetic and marker data and an 8-segment musculoskeletal model was constructed. Knee abduction moment waveforms were clustered as either a large early peak, or not a large early peak using a two-step process with Euclidean distances and the Ward-d2 cluster method. Mediolateral distance between foot and trunk was associated with the large early peak waveform with an odds ratio (95% confidence interval) of 3.4 (2.7-4.4). Knee flexion angle at initial contact and knee flexion excursion had odds ratios of 1.9 (1.6-2.4) and 1.6 (1.3-2.0). Knee abduction excursions had an odds ratio of 1.8 (1.1-2.4) and 1.8 (1.4-2.4), respectively. Heel strike landings and anteroposterior distance between foot and trunk were not associated with the large early peak waveform with odds ratios of 1.2 (0.9-1.7) and 1.1 (0.8-1.3), respectively. The knee abduction moment waveform is associated with several kinematic variables observed during ACL injury. The results support intervention programs that can modify these kinematics and thus reduce early stance phase knee abduction moments.
Objectives Patellar tendon injuries occur via various mechanisms such as overuse, or due to surgical graft harvest for anterior cruciate ligament reconstruction (ACLR). Quantified patellar tendon stiffness after injury may help guide clinical care. Continuous shear wave elastography (cSWE) allows for the assessment of viscosity and shear modulus in tendons. The reliability of the measure, however, has not been established in the patellar tendon. The purpose of this study was to investigate the interrater reliability, intrarater reliability, and between‐day stability of cSWE in both healthy and pathological patellar tendons. Methods Participants with patellar tendinopathy (n = 13), history of ACLR using bone‐patellar tendon‐bone autograft (n = 9), and with no history of patellar tendon injury (n = 13) were recruited. cSWE was performed 4 times by multiple raters over 2 days. Intraclass correlations (ICC) and minimum detectable change (MDC95%) were calculated. Results Good to excellent between‐day stability were found for viscosity (ICC = 0.905, MDC95% = 8.3 Pa seconds) and shear modulus (ICC = 0.805, MDC95% = 27.4 kPa). The interrater reliability measures, however, were not as reliable (ICC = 0.591 and 0.532). Conclusions cSWE is a reliable assessment tool for quantifying patellar tendon viscoelastic properties over time. It is recommended, however, that a single rater performs the measure as the interrater reliability was less than ideal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.