Abstract.We studied the association between use of mobile and cordless phones and malignant brain tumours. Pooled analysis was performed of two case-control studies on patients with malignant brain tumours diagnosed during 1997-2003 and matched controls alive at the time of study inclusion and one case-control study on deceased patients and controls diagnosed during the same time period. Cases and controls or relatives to deceased subjects were interviewed using a structured questionnaire. Replies were obtained for 1,251 (85%) cases and 2,438 (84%) controls. The risk increased with latency period and cumulative use in hours for both mobile and cordless phones. Highest risk was found for the most common type of glioma, astrocytoma, yielding in the >10 year latency group for mobile phone use odds ratio (OR) = 2.7, 95% confidence interval (CI) = 1.9-3.7 and cordless phone use OR = 1.8, 95% CI = 1.2-2.9. In a separate analysis, these phone types were independent risk factors for glioma. The risk for astrocytoma was highest in the group with first use of a wireless phone before the age of 20; mobile phone use OR = 4.9, 95% CI = 2.2-11, cordless phone use OR = 3.9, 95% CI = 1.7-8.7. In conclusion, an increased risk was found for glioma and use of mobile or cordless phone. The risk increased with latency time and cumulative use in hours and was highest in subjects with first use before the age of 20.
Abstract. The lipocalin type of prostaglandin D synthase or ß-trace protein is synthesized in the choroid plexus, leptomeninges and oligodendrocytes of the central nervous system and is secreted into the cerebrospinal fluid. ß-trace protein is the key enzyme in the synthesis of prostaglandin D2, an endogenous sleep-promoting neurohormone in the brain. Electromagnetic fields (EMF) in the radio frequency (RF) range have in some studies been associated with disturbed sleep. We studied the concentration of ß-trace protein in blood in relation to emissions from wireless phones. This study included 62 persons aged 18-30 years. The concentration of ß-trace protein decreased with increasing number of years of use of a wireless phone yielding a negative ß coefficient = -0.32, 95% confidence interval -0.60 to -0.04. Also cumulative use in hours gave a negative ß coefficient, although not statistically significant. Of the 62 persons, 40 participated in an experimental study with 30 min exposure to an 890-MHz GSM signal. No statistically significant change of ß-trace protein was found. In a similar study of the remaining 22 participitants with no exposure, ß-trace protein increased significantly over time, probably due to a relaxed situation. EMF emissions may down-regulate the synthesis of ß-trace protein. This mechanism might be involved in sleep disturbances reported in persons exposed to RF fields. The results must be interpreted with caution since use of mobile and cordless phones were self-reported. Awareness of exposure condition in the experimental study may have influenced ß-trace protein concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.