Signatures are most widely used biometric identity for verification of a person or an individual. Signature is legally accepted as a mark of identification and authorization in almost all commercial, social, jurisdictional documents since a long time. Signature verification is a process of automatic recognition of human handwritten signature and differentiating between original and forge signature. In this research, we have used low level stroke feature, which were originally proposed for recognition of printed Gujarati text, for offline handwritten signature verification. Experiment was performed on the ICDAR 2009 Signature Verification Competition dataset which contains both genuine and forge signature. Recognition is performed using Support Vector Machine (SVM) classifier with 3-fold cross validation. Equal Error Rate (EER) achieved is 15.59, which is comparable with the ICDAR 2009 Signature Verification Competition Result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.