According to the world health organization report, brain cancer has the highest death rate. magnetic resonance imaging (MRI) for detecting brain tumours is adopted these days due to several advantages over other detection techniques. This paper presents a novel methodology to classify MR images based on texture and deep features, z-score normalization, and, Comprehensive learning elephant herding optimization (CLEHO) based feature optimization and classification. Deep features of brain MR images have been extracted through DenseNet121 convolutional neural network and texture features have been extracted by using the Gabor 2D filter, Haralick texture feature, edge continuity texture feature, first order statistical texture feature, local binary pattern feature, difference theoretic texture feature, and spectral texture feature techniques. Normalization has been done using three normalization techniques that is, z score, mean median absolute deviation (MMAD), and Tanh-based after aggregating the features extracted from the previous step. z-score normalization has been suggested for feature normalization after comparing the results attained from the three techniques. Lastly, binary CLEHO has been proposed for selecting an optimal feature set and also optimizing the 'k' value of the k-NN classifier. The outcome of this proposed work is compared with other state-of-the-art methods for a publicly available magnetic resonance image Fighshare dataset of 3064 slices from 233 patients. The proposed work has a brain tumour average classification accuracy of 98.97%, which is better than the other state-of-the-art methods.The proposed work can be used to assist the radiologist in the screening of multiclass brain tumours.
Magnetic Resonance Imaging plays an important role in diagnosing the brain tumor accurately, but it requires the approach to enhance the magnetic resonance images to assist physicians in brain tumor detection and making the treatment plan precisely to reduce the mortality rate. Therefore, in this proposed work, a comprehensive learning-based elephant herding optimization technique has been introduced to select the optimal value of smoothness factor in Bi-Histogram Equalization with Adaptive Sigmoid Function that enhances the visual quality as well as the appearance of the suspicious regions in magnetic resonance images. Further, the enhancement performance has been evaluated by the enhancement quality metrics. The metrics used include mean square error, peak signal to noise ratio, mean absolute error, structural similarity index metric, feature similarity index metric, Riesz transformed based feature similarity index metric, spectral residual-based similarity index metric, and absolute mean brightness error. The outcomes of this proposed work have a remarkable impact on enhancing magnetic resonance images and providing visual assistance for diagnosing brain tumors. The performance of the evaluation metrics is verified with Friedman's mean rank test, which strongly indicates a statistical difference between the proposed method and state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.