Motile bacteria use large receptor arrays to detect and follow chemical gradients in their environment. Extended receptor arrays, composed of networked signaling complexes, promote cooperative stimulus control of their associated signaling kinases. Here, we used structural lesions at the communication interface between core complexes to create an Escherichia coli strain with functional but dispersed signaling complexes. This strain allowed us to directly study how networking of signaling complexes affects chemotactic signaling and gradient-tracking performance. We demonstrate that networking of receptor complexes provides bacterial cells with about 10-fold-heightened detection sensitivity to attractants while maintaining a wide dynamic range over which receptor adaptational modifications can tune response sensitivity. These advantages proved especially critical for chemotaxis toward an attractant source under conditions in which bacteria are unable to alter the attractant gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.