Energy efficiency is a crucial performance metric in sensor networks, directly determining the network lifetime. Consequently, a key factor in WSN is to improve overall energy efficiency to extend the network lifetime. Although many algorithms have been presented to optimize the energy factor, energy efficiency is still one of the major problems of WSNs, especially when there is a need to sample an area with different types of loads. Unlike other energy-efficient schemes for hierarchical sampling, our hypothesis is that it is achievable, in terms of prolonging the network lifetime, to adaptively remodify CHs sensing rates (the processing and transmitting stages in particular) in some specific regions that are triggered significantly less than other regions. In order to do so we introduce the Adaptive Distributed Hierarchical Sensing (ADHS) algorithm. This algorithm employs a homogenous sensor network in a distributed fashion and changes the sampling rates of the CHs based on the variance of the sampled data without damaging significantly the accuracy of the sensed area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.