To asses stability against 1/ f noise, the Low Frequency Instrument (LFI) on-board the Planck mission will acquire data at a rate much higher than the data rate allowed by the science telemetry bandwith of 35.5 kbps. The data are processed by an on-board pipeline, followed onground by a decoding and reconstruction step, to reduce the volume of data to a level compatible with the bandwidth while minimizing the loss of information. This paper illustrates the on-board processing of the scientific data used by Planck/LFI to fit the allowed data-rate, an intrinsecally lossy process which distorts the signal in a manner which depends on a set of five free parameters (N aver , r 1 , r 2 , q, O) for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the on-board processing as a function of these parameters. It describes the method of tuning the on-board processing chain to cope with the limited bandwidth while keeping to a minimum the signal distortion. Tuning is sensitive to the statistics of the signal and has to be constantly adapted during flight. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, pre-launch tests or data taken from LFI operating in a special diagnostic acquisition mode. All the needed optimization steps are performed by an automated tool, OCA2, which simulates the on-board processing, explores the space of possible combinations of parameters, and produces a set of statistical indicators, among them: the compression rate C r and the processing noise Q . For Planck/LFI it is required that C r = 2.4 while, as for other systematics, Q would have to by less than 10% of rms of the instrumental white noise. An analytical model is developed that is able to extract most of the relevant information on the processing errors and the compression rate as a function of the signal statistics and the processing parameters to be tuned. This model will be of interest for the instrument data analysis to asses the level of signal distortion introduced in the data by the on-board processing. This method was applied during ground tests when the instrument was operating in conditions representative of flight. Optimized parameters were obtained and inserted in the on-board processor and the performance has been verified against the requirements, with the result that the required data rate of 35.5 Kbps has been achieved while keeping the processing error at a level of 3.8% of the instrumental white noise and well below the target 10% level.
The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.