Individuals create and consume more diverse data about themselves today than any time in history. Sources of this data include wearable devices, images, social media, geo-spatial information and more. A tremendous opportunity rests within cross-modal data analysis that leverages existing domain knowledge methods to understand and guide human health. Especially in chronic diseases, current medical practice uses a combination of sparse hospital based biological metrics (blood tests, expensive imaging, etc.) to understand the evolving health status of an individual. Future health systems must integrate data created at the individual level to better understand health status perpetually, especially in a cybernetic framework. In this work we fuse multiple user created and open source data streams along with established biomedical domain knowledge to give two types of quantitative state estimates of cardiovascular health. First, we use wearable devices to calculate cardiorespiratory fitness (CRF), a known quantitative leading predictor of heart disease which is not routinely collected in clinical settings. Second, we estimate inherent genetic traits, living environmental risks, circadian rhythm, and biological metrics from a diverse dataset. Our experimental results on 24 subjects demonstrate how multi-modal data can provide personalized health insight. Understanding the dynamic nature of health status will pave the way for better health based recommendation engines, better clinical decision making and positive lifestyle changes.
The use of face masks is recommended worldwide to reduce the spread of COVID-19. A plethora of facial coverings and respirators, both commercial and homemade, pervade the market, but the true filtration capabilities of many homemade measures against the virus are unclear and continue to be unexplored. In this work, we compare the following masks in keeping out particulate matter below 2.5 microns in decreasing order of their efficacy: N95 respirators, cloth masks with activated carbon air filters, cloth masks with HVAC air filters, surgical masks, heavily-starched cloth masks, lightly-starched cloth masks, and regular cloth masks. The experiments utilize an inhalation system and aerosol chamber to simulate a masked individual respiring aerosolized air. COVID-19 disproportionately affects people in low-income communities, who often lack the resources to acquire appropriate personal protective equipment and tend to lack the flexibility to shelter in place due to their public-facing occupations. This work tests low-cost enhancements to homemade masks to assist these communities in making better masks to reduce viral transmission. Experimental results demonstrate that the filtration efficacy of cloth masks with either a light or heavy starch can approach the performance of much costlier masks. This discovery supports the idea of low-cost enhancements to reduce transmission and protect individuals from contracting COVID-19.
Background Modern environmental health research extensively focuses on outdoor air pollutants and their effects on public health. However, research on monitoring and enhancing individual indoor air quality is lacking. The field of exposomics encompasses the totality of human environmental exposures and its effects on health. A subset of this exposome deals with atmospheric exposure, termed the “atmosome.” The atmosome plays a pivotal role in health and has significant effects on DNA, metabolism, skin integrity, and lung health. Objective The aim of this work is to develop a low-cost, comprehensive measurement system for collecting and analyzing atmosomic factors. The research explores the significance of the atmosome in personalized and preventive care for public health. Methods An internet of things microcontroller-based system is introduced and demonstrated. The system collects real-time indoor air quality data and posts it to the cloud for immediate access. Results The experimental results yield air quality measurements with an accuracy of 90% when compared with precalibrated commercial devices and demonstrate a direct correlation between lifestyle and air quality. Conclusions Quantifying the individual atmosome is a monumental step in advancing personalized health, medical research, and epidemiological research. The 2 main goals in this work are to present the atmosome as a measurable concept and to demonstrate how to implement it using low-cost electronics. By enabling atmosome measurements at a communal scale, this work also opens up potential new directions for public health research. Researchers will now have the data to model the impact of indoor air pollutants on the health of individuals, communities, and specific demographics, leading to novel approaches for predicting and preventing diseases.
BACKGROUND Modern environmental health research extensively focuses on outdoor air pollutants and their effects on public health. However, research on monitoring and enhancing individual indoor air quality is lacking. The field of exposomics encompasses the totality of human environmental exposures and its effects on health. A subset of this exposome deals with atmospheric exposure, termed the “atmosome.” The atmosome plays a pivotal role in health and has significant effects on DNA, metabolism, skin integrity, and lung health. OBJECTIVE The aim of this work is to develop a low-cost, comprehensive measurement system for collecting and analyzing atmosomic factors. The research explores the significance of the atmosome in personalized and preventive care for public health. METHODS An internet of things microcontroller-based system is introduced and demonstrated. The system collects real-time indoor air quality data and posts it to the cloud for immediate access. RESULTS The experimental results yield air quality measurements with an accuracy of 90% when compared with precalibrated commercial devices and demonstrate a direct correlation between lifestyle and air quality. CONCLUSIONS Quantifying the individual atmosome is a monumental step in advancing personalized health, medical research, and epidemiological research. The 2 main goals in this work are to present the atmosome as a measurable concept and to demonstrate how to implement it using low-cost electronics. By enabling atmosome measurements at a communal scale, this work also opens up potential new directions for public health research. Researchers will now have the data to model the impact of indoor air pollutants on the health of individuals, communities, and specific demographics, leading to novel approaches for predicting and preventing diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.