Recent progress towards learning from limited supervision has encouraged efforts towards designing models that can recognize novel classes at test time (generalized zeroshot learning or GZSL). GZSL approaches assume knowledge of all classes, with or without labeled data, beforehand. However, practical scenarios demand models that are adaptable and can handle dynamic addition of new seen and unseen classes on the fly (i.e continual generalized zero-shot learning or CGZSL). One solution is to sequentially retrain and reuse conventional GZSL methods, however, such an approach suffers from catastrophic forgetting leading to suboptimal generalization performance. A few recent efforts towards tackling CGZSL have been limited by difference in settings, practicality, data splits and protocols followed -inhibiting fair comparison and a clear direction forward. Motivated from these observations, in this work, we firstly consolidate the different CGZSL setting variants and propose a new Online-CGZSL setting which is more practical and flexible. Secondly, we introduce a unified feature-generative framework for CGZSL that leverages bi-directional incremental alignment to dynamically adapt to addition of new classes, with or without labeled data, that arrive over time in any of these CGZSL settings.Our comprehensive experiments and analysis on five benchmark datasets and comparison with baselines show that our approach consistently outperforms existing methods, especially on the more practical Online setting.
Recent progress towards learning from limited supervision has encouraged efforts towards designing models that can recognize novel classes at test time (generalized zeroshot learning or GZSL). GZSL approaches assume knowledge of all classes, with or without labeled data, beforehand. However, practical scenarios demand models that are adaptable and can handle dynamic addition of new seen and unseen classes on the fly (i.e continual generalized zero-shot learning or CGZSL). One solution is to sequentially retrain and reuse conventional GZSL methods, however, such an approach suffers from catastrophic forgetting leading to suboptimal generalization performance. A few recent efforts towards tackling CGZSL have been limited by difference in settings, practicality, data splits and protocols followed -inhibiting fair comparison and a clear direction forward. Motivated from these observations, in this work, we firstly consolidate the different CGZSL setting variants and propose a new Online-CGZSL setting which is more practical and flexible. Secondly, we introduce a unified feature-generative framework for CGZSL that leverages bi-directional incremental alignment to dynamically adapt to addition of new classes, with or without labeled data, that arrive over time in any of these CGZSL settings.Our comprehensive experiments and analysis on five benchmark datasets and comparison with baselines show that our approach consistently outperforms existing methods, especially on the more practical Online setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.