Manzamine A and related derivatives isolated from a common Indonesian sponge, Acanthostrongylophora, have been identified as a new class of GSK-3beta inhibitors. The semisynthesis of new analogues and the first structure-activity relationship studies with GSK-3beta are also reported. Moreover, manzamine A proved to be effective in decreasing tau hyperphosphorylation in human neuroblastoma cell lines, a demonstration of its ability to enter cells and interfere with tau pathology. Inhibition studies of manzamine A against a selected panel of five different kinases related to GSK-3beta, specifically CDK-1, PKA, CDK-5, MAPK, and GSK-3alpha, show the specific inhibition of manzamine A on GSK-3beta and CDK-5, the two kinases involved in tau pathological hyperphosphorylation. These results suggest that manzamine A constitutes a promising scaffold from which more potent and selective GSK-3 inhibitors could be designed as potential therapeutic agents for Alzheimer's disease.
Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinol isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi-and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g. Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATPnoncompetitive pocket of glycogen synthesis kinase-3β (GSK-3β), which is a putative target of manzamines. Based on the results presented here it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.
Aaptamine has potent cytotoxicity that may be explained by its ability to intercalate DNA. Aaptamine was evaluated for its ability to bind to DNA to validate DNA binding as the primary mechanism of cytotoxicity. Based on UV-vis absorbance titration data, the K(obs) for aaptamine was 4.0 (+/-0.2) x 10(3) which was essentially equivalent to the known DNA intercalator N-[2-(diethylamino)ethyl]-9-aminoacridine-4-carboxamide. Semi-synthetic core modifications were performed to improve the general structural diversity of known aaptamine analogs and vary its absorption characteristics. Overall, 26 aaptamine derivatives were synthesized which consisted of a simple homologous range of mono and di-N-alkylations as well as some 9-O-sulfonylation and bis-O-isoaaptamine dimer products. Each product was evaluated for activity in a variety of whole cell and viral assays including a unique solid tumor disk diffusion assay. Details of aaptamine's DNA-binding activity and its derivatives' whole cell and viral assay results are discussed.
Several dibromotyramine derivatives including moloka'iamine were selected as potential zebra mussel (Dreissena polymorpha) antifoulants due to the noteworthy absence of fouling observed on sponges of the order Verongida. Sponges of the order Verongida consistently produce these types of bromotyrosine-derived secondary metabolites. Previously reported antifouling data for the barnacle Balanus amphitrite (EC 50 = 12.2 μM) support the results reported here that the compound moloka'iamine may be a potential zebra mussel antifoulant compound (EC 50 = 10.4 μM). The absence of phytotoxic activity of the compound moloka'iamine toward Lemna pausicostata and, most importantly, the compound's significant selectivity against macrofouling organisms such as zebra mussels suggest the potential utility of this compound as a naturally derived antifoulant lead.The search for natural antifouling products that are environmentally benign alternatives to the currently utilized metal-based antifouling paints and preservatives has received increasing attention. We have focused our efforts on marine organisms with apparent biochemical defense mechanisms against fouling based on our observations in the field. As of December 31, 2003, the Environmental Protection Agency (EPA) canceled the utilization of all wood preservatives containing chromated copper arsenate (CCA), emphasizing the importance to search for natural benign alternatives. Sponges of the order Verongida are typically unfouled by macroorganisms and possess distinct morphological and biochemical defense characteristics. The most notable biochemical characteristic of these sponges is the consistent biosynthesis of dibromotyramine derivatives. Many active antibiotic and antifouling compounds identified to date are bromotyrosine derivatives from these Verongid species. , Moloka'iamine (5) is selective against many cell lines and is cytotoxic against P388 leukemia cells with an IC 50 value of 6.0 μM, , A-549 lung cells with an IC 50 value of 28.4 μM, HT-29 colon cells with an IC 50 value of 14.2 μM, and CV-1 kidney cells with an IC 50
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.