The fabrication of a ZnO/Au nanosquare-array electrode was successfully carried out for the detection of glucose concentration in biomedical applications. The fabrication of the ZnO/Au nanosquare array using an ultra-thin alumina mask (UTAM) based on the imprinted anodic aluminum oxide (AAO) template and the direct current (DC) sputtering method was able to produce a very well-ordered nanosquare arrangement with a side size of 300 nm and a thickness of 100 nm. Tests were done to evaluate the performance of the electrode by means of cyclic voltammetry (CV) which showed that the addition of glucose oxidase (GOx) increased the sensitivity of the electrode up to 1180 ± 116 μA mM−1cm−2, compared with its sensitivity prior to the addition of GOx of 188.34 ± 18.70 mA mM−1 cm−2. A iox/ired ratio equal to ~1 between the peaks of redox reactions was obtained for high (hyperglycemia), normal, and low (hypoglycemia) levels of glucose. The ZnO/Au nanosquare-array electrode was 7.54% more sensitive than the ZnO/Au thin-film electrode. Furthermore, finite-difference time-domain (FDTD) simulations and theoretical calculations of the energy density of the electric and magnetic fields produced by the ZnO/Au electrode were carried out and compared to the results of CV. From the results of CV, FDTD simulation, and theoretical calculations, it was confirmed that the ZnO/Au nanosquare array possessed a significant optical absorption and that the quantum effect from the nanosquare array resulted in a higher sensitivity than the thin film.
The fabrication of silver (Ag) and gold (Au) thin film electrodes was successfully carried out using the DC sputtering deposition method. These thin film electrodes were able to detect the increase in serum albumin concentration that was used as a prognostic factor for leukemia. The simulation and the optical experimental analysis show that an increase in BSA concentration can increase the absorbance peak observed at a wavelength of 435 nm on hypoalbumin medium and 470 nm on normal concentration of serum albumin medium. The performance of the electrodes was electrochemically tested, in which it was shown that a decrease in oxidation and reduction peaks occurred with respect to an increase in BSA concentration. An oxidation peak was observed at a voltage of 0.5 V for the Ag thin film. For the Au, Au/Ag, and Ag/Au thin films, an oxidation peak was observed at a voltage of 1.0 V. The limits of detection (LODs) of the Ag, Ag/Au, Au, and Au/Ag thin films were 0.56, 0.24, 0.64, and 0.36 g/dL, respectively. Therefore, based on both the electrochemical and optical analysis, the Ag/Au thin film possessed the highest potential for prognosis monitoring of leukemia compared with the other Ag and Au thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.