In the present research investigation, aluminum–boron carbide surface composites were fabricated using friction stir processing technique. Boron carbide powder particles were incorporated into AA 7075 substrate by the thermomechanical mixing generated through multiple passes of friction stir processing. A parametric investigation was conducted to encounter homogeneous boron carbide powder particles distribution in the substrate matrix by employing various parameter combination sets like tool rotational speed and alteration in tool travel direction. Microstructural characterizations were performed by means of optical microscopy, scanning electron microscopy and X-ray diffraction analysis to investigate on boron carbide powder particles distribution, phases present, and grain morphologies in the substrate matrix. Homogeneous distribution of boron carbide powder particles was observed for surface composites processed at lowest tool rotational speed. Uniform boron carbide powder particles distribution in the processed zone along with various strengthening mechanisms brought about two-fold increase in microhardness and wear resistance of the prepared composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.